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ABSTRACT
Understanding, representing, and reasoning about Points Of Inter-
est (POI) types such as Auto Repair, Body Shop, Gas Stations, or
Planetarium, is a key aspect of geographic information retrieval,
recommender systems, geographic knowledge graphs, as well as
studying urban spaces in general, e.g., for extracting functional
or vague cognitive regions from user-generated content. One pre-
requisite to these tasks is the ability to capture the similarity and
relatedness between POI types. Intuitively, a spatial search that re-
turns body shops or even gas stations in the absence of auto repair
places is still likely to satisfy some user needs while returning plan-
etariums will not. Place hierarchies are frequently used for query
expansion, but most of the existing hierarchies are relatively shal-
low and structured from a single perspective, thereby putting POI
types that may be closely related regarding some characteristics
far apart from another. This leads to the question of how to learn
POI type representations from data. Models such as Word2Vec that
produces word embeddings from linguistic contexts are a novel
and promising approach as they come with an intuitive notion of
similarity. However, the structure of geographic space, e.g., the in-
teractions between POI types, differs substantially from linguistics.
In this work, we present a novel method to augment the spatial con-
texts of POI types using a distance-binned, information-theoretic
approach to generate embeddings. We demonstrate that our work
outperforms Word2Vec and other models using three different eval-
uation tasks and strongly correlates with human assessments of
POI type similarity. We published the resulting embeddings for 570
place types as well as a collection of human similarity assessments
online for others to use.
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1 INTRODUCTION AND MOTIVATION
Semantic similarity and relatedness measures are prominent com-
ponents of a variety of methods in geographic information retrieval,
recommender systems, ontology engineering, and so forth; see [10]
for a recent overview.1 Given the importance of categorization for
human cognition [8], place types are one of the three components
(location and name being the other two) published by all major
gazetteers and POI databases. 2 Place types act as a proxy for func-
tions that a particular place of a given type affords. Intuitively, the
presence of a nightclub (irrespective of its name or location) implies
a certain exposure to noise during nights, the presence of a younger
demographic, singles, a higher potential for drug related crimes,
the possibility of getting a drink or snack late at night, and so forth.
While each nightclub may differ to some degree, nightclubs share
many of their characteristics with bars and the broader category of
music venues, while they can neither act as substitute for bakeries
nor barbers. Consequently, in the absence of POIs of a certain type,
e.g., Nightclub, within a search radius, a system should return a

1Similarity and relatedness are related concepts, in fact similarity is a subproperty
of relatedness but not the other way around. To give an intuitive example, the Grif-
fith Observatory is related to Griffith Jenkins Griffith via a donorOf relation but the
observatory and the person are not similar. Many techniques, especially those based
on linguistic aspects (including Word2Vec [19]) instead of formal semantics, cannot
effectively distinguish between similarity and relatedness. Consequently, we approach
them here together. Two of our three evaluation schemata, however, will explicitly
focus on (human) assessments of similarity.
2In the following, we will use Point of Interest (POI) and place as synonyms.
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place of a similar type, e.g., Bar. This implies that semantic similar-
ity measures should reflect human assessments of similarity, be it
about place types or another topic.

To measure similarity, one may syntactically compare type la-
bels, compute the distance in a place type hierarchy, count common
place in their extensions, and so forth. New methods rely on com-
paring their linguistic meaning by learning word embeddings for all
types and then computing their Cosine Similarity. However, such
approaches do not consider any spatial information that is implic-
itly embedded in these place types, such as their co-occurrence
patterns. This idea resembles the distributional semantics in lin-
guistics and can be further summarized as: place can be categorized
by their neighbors. The original counterpart in the linguistics is: You
shall know a word by the company it keeps [5].

In this work, we embrace the idea of distributional semantics in
geographic space and explore the similarity and relatedness of place
types using different latent representations with augmented spatial
contexts. Spatial contexts are augmented both intrinsically and
extrinsically. In order to consider distance in our approach, distance
decay and distance lags are used as intrinsic adjustments to augment
the spatial contexts. We realize that there is a notable difference
between place and space, namely place is space infused with human
meaning [26], so we take check-in counts, i.e., popularity, as a proxy
for human activities into consideration as well. Finally, and to adjust
for the fact that place types follow a power law distribution, we also
take the uniqueness of types at a certain distance into account. We
approach both aspects from an information theoretic perspective,
i.e., by measuring information content.

The contributions of this paper are as follows:

• We illustrate that the commonly used linguistic models alone
cannot adequately capture the structure of geographic space
such as the distinctive patterns in which places of different
types co-occur. Instead, we propose a novel model based on
augmented spatial contexts that make geographic distance a
first-class citizen and adjust these contexts by an information
theoretic perspective on the uniqueness of place types within
a certain distance as well as their popularity as a proxy for
human activities.

• We provide a comprehensive evaluation of different place
type embeddings with respect to the top-down Yelp POI cat-
egory hierarchy. This evaluation essentially brings inductive
(bottom-up place type embeddings) and deductive (top-down
place hierarchy structure) approaches together.

• We establish two baselines using Amazon’s Mechanical Turk
Human Intelligence Tasks (HIT) for measuring the similarity
and relatedness of place types. Our evaluation result shows
that our method has better accuracy than purely linguisti-
cally based embeddings, which confirms the importance of
explicit spatial contexts. In fact, we demonstrate the remark-
able fact that similarity assessments derived from embed-
dings created exclusively via our augmented spatial contexts,
i.e., by merely studying spatial patterns of place types and
their relative popularity, correlate strongly with human sim-
ilarity judgments despite the fact that humans can rely on
their rich cultural experience, the meaning of type labels,
their background knowledge, and so forth.

• While the resulting place type embeddings can be used for a
wide range of tasks that rely on similarity assessments such
as commonly used in geographic information retrieval, co-
reference resolution and ontology-alignment, as well as rec-
ommender system, we introduce a novel perspective, namely
compression, as an interesting future area of study that deals
with the question of whether place types can be substituted
or act as proxies for other POI types, e.g., to summarize
neighborhoods by a minimal number of place types.

• Finally, we make the embeddings as well as thousands of hu-
man similarity assessments from Mechanical Turk available
online at http://stko.geog.ucsb.edu/place2vec for future use.

The remainder of this paper is organized as follows. Section 2
summarizes existing work on embeddings and geospatial semantics.
Section 3 presents the dataset and provides basic concepts used
throughout our work. Section 4 explains in detail how we model
the augmented spatial contexts. Section 5 presents three evaluation
schemes and Section 6 is evaluation. Finally, Section 7 summarizes
the research and points to future directions.

2 RELATEDWORK
Most research on POI embeddings originates from word embedding
techniques using neural network language models [2]. One of the
most successful models in this class isWord2Vec, which is composed
of Skip-Gram and Continuous-Bag-of-Words, proposed by Mikolov
et al. [19, 20]. It uses neural networks that take advantage of the
distributional semantics of natural languages. Skip-Gram learns
the embeddings by predicting context words given center words
whereas Continuous-Bag-of-Words does it the other way around.

Previous works on embeddings related to geographic informa-
tion can be grouped into two categories. The first category considers
the influence of geographic context on word embeddings. In a first
attempt to investigate the extent to which geographic context af-
fects the semantics of words, Cocos and Callison-Burch [3] trained
word embeddings in geolocated tweets using geographic contexts
derived from Google Places and OpenStreetMap (OSM). Their work
is similar to ours in a sense that they also realize the importance
of geospatial contexts, but the scope of their work remains lim-
ited to the linguistic domain. In addition, their result shows that
geographic context is not as semantically rich as textual context.
In contrast, we will demonstrate that augmented spatial contexts
are indeed rich in semantic information. Zhang et al. [31] also ac-
knowledges the variation in the semantics of words depending on
the geographic space. They propose a vector space transformation
under different topic distributions in order to generate a mapping
between different geographic contexts. Yet again their approach is
focusing on linguistic aspects whereas geographic aspects are not
directly considered in their model.

The second category is more similar to our work which models
geographic entities directly. Yao et al. [28] and Zhang et al. [30] have
a very different focus compared to our study as they utilize embed-
ding techniques in order to detect the spatial distribution of urban
land use and uncover urban dynamics. We are focusing on explor-
ing the extent to which different adjustment to the spatial context
influences the embedding results. Feng et al. [4] and Zhao et al. [32]
learn embedding in order to predict future POI visits or recommend

http://stko.geog.ucsb.edu/place2vec
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POIs. This is a byproduct of the original prediction-basedWord2Vec
models. Our work has a different focus and therefore does not re-
quire temporally sequential data, such as check-in sequences of
users. Instead, we are interested in the semantics of place types and
utilize embeddings as a means to construct representations, share
them, and to measure (semantic) similarity across types, e.g., in the
context of query expansion [10] and extraction [12].

This relates our work to research on geographic information
retrieval and geospatial semantics, and here more specifically to the
social sensing framework of semantic signatures [9] which charac-
terizes place types based on thematic, temporal, and spatial perspec-
tives called bands in analogy to spectral signatures. For example,
thematic bands for Points Of Interest have been studied by Adams
and Janowicz [1] using Latent Dirichlet Allocation to extract topics
from unstructured texts about place types. Quercini and Samet [23]
proposes a set of graph-based similarity measures to determine the
relatedness of a concept to a location in the Wikipedia link struc-
ture. These location-related concepts, which are referred to as local
lexicon in their work, can be seen as signatures to differentiate geo-
graphic entities as well. Research on the temporal perspective has
also shown promising results. Ye et al. [29] studied the temporal di-
mensions of places in the context of location-based social networks.
McKenzie and Janowicz [17] applied temporal signature to reverse
geocoding to adjust rankings returned by a spatial range search
based on a temporal distortion model. So far, the spatial perspective,
i.e., the question whether one can learn place (type) representations
exclusively from spatial patterns, has received less attention. Mülli-
gann et al. [22] used a measure based on combining point pattern
analysis with semantic similarity, while Zhu et al. [33] proposes
27 spatial statistical features to characterize different aspects of
place types in digital gazetteers. Our work can be seen as a contin-
uation of this line of research and a contribution to the semantic
signatures framework by using novel methods such as augmented
spatial contexts to overcome the limitations of previous work. In
fact, we will show that these contexts (even when taken on their
own) are able to reproduce human similarity judgments, i.e., yield
strong correlations between human assessments and our model.

3 PRELIMINARIES
The individual Points of Interest and their categories used in this
research are from the Yelp Dataset Challenge3. This dataset cov-
ers venues from 11 different cities from four countries (United
Kingdom, Germany, Canada, and the United States). We selected
Las Vegas as study region, but our methods can be generalized to
different cities and place type schema; see [18] for a discussion
about regional effects. The Yelp dataset groups their 1030 POI types
into 22 root categories, such as Restaurants, Shopping, Arts &
Entertainment, Professional Services, Health & Medical,
and so forth. Each POI li in the POI set L is composed of three
parts, a POI name n ∈ N , a geographic identifier (here, latitude and
longitude of a place location modeled as centroid) д ∈ G, and a set
of associated POI types {t1, t2, t3, ..., tk } ⊆ T .

After analyzing the 1030 place types and their frequencies in Las
Vegas, we see a long tail in the rank-frequency distribution (Figure
1). The log-log plot also shows a linear trend. Fitting loд(f requency)

3https://www.yelp.com/dataset_challenge
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Figure 1: POI type rank-frequency and log-log plot.

and loд(rank) using linear regression, yields a value of 0.8543 for
R-squared which indicates that the model fits strongly to the data
and a p-value of 2.2e−16 which indicates that such a scaling effect
is highly significant. Simply put, these statistics show that the rank-
frequency indeed follows a power law distribution by which a few
POI types dominate the data. This is an important motivation for
the proposed information content-based frequency adjustment in
our augmented spatial contexts discussed in the following section.

4 METHODS
In this section, we describe the latent representationmethod and the
augmented spatial contexts. The latent representation originates
from natural language processing and has been used successfully
in many domains. By acknowledging the difference in context for-
mation between geographic space and linguistic expressions, we
introduce three approaches to model the geographic influence in
determining latent representations. These methods include, naive
spatial context, simple augmented spatial context, and Information
Theoretic, Distance Lagged (ITDL) augmented spatial context.

4.1 Latent Representation Method
Recent work has shown that the latent representation model
Word2Vec can effectively capture the semantic relationships inword
spaces based on the distributional semantics assumption [19, 20].
From analyzing the POI type distribution, we know that, similarly
to the word frequency distribution [14], it follows a power law
distribution. This leads us to taking advantage of the Word2Vec
model and its underlying distributional semantics assumption for
the study of POI types in geographic space.

We selected the Skip-Gram model, which predicts context POI
types given center types. Our objective is to approximate the true
place type probability distribution from our training data. A typical
approach is to use cross entropy to measure the difference between
the learned probability and the true probability. Since our data is
discrete and we only care about the center place type, the cross
entropy can be simplified as:

D(ŷ,y) = −yc loд(ŷc ) (1)

where ŷ and y are the learned probability distribution and true
probability distribution, respectively. ŷc is the predicted probability
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of the context POI types given the center place type (denoted by
the index c), and yc is the true probability of the context POI types
given the center place type. ŷc can be further defined as:

ŷc = P(t1, t2, t3, ..., tm |tc ) (2)

where t1, t2, t3, ..., tm are the context place types and tc is the center
place type. In order to calculate the probability, we apply the Naive
Bayes assumption. Note that yc will always be 1. Finally, we use the
softmax function to turn the scores into probabilities and substitute
the POI types with vector representations. The objective function
is defined as:

minimize J = −loд
m∏
t=1

exp(uTt vc )∑ |T |
k=1 exp(u

T
k vc )

(3)

where ut andvc are the context place type vectors and center place
type vectors, respectively; |T | is the cardinality of a POI type, i.e., its
extension. We implement themodel in TensorFlow usingMini-Batch
Gradient Descent and Noise-Contrastive Estimation [21].

4.2 Naive Spatial Context
An intuitive approach to utilize the structure of geographic space is
to naively model the spatial context based on the center place type
and context place type co-occurrences. We denote the context place
type as tcontext and center place type as tcenter . This naive method
is faithful to the original Word2Vec model and captures the spatial
contextual information using a nearest neighbor approach. Unlike
natural languages which are sequential in nature, Points of Interest
in Yelp are distributed in a 2D geographic space. As a result, instead
of using a fixed-size sliding window to construct (tcenter , tcontext )
pairs, we create spatial buffers around each center POI to detect
the k-nearest neighbor POIs and record their respective place types
as our training pairs. Since each center POI li and each context
POI lj can have a set of place types Tl i and Tl j respectively, we
use the Cartesian productTl i ×Tl j = {(tcenter , tcontext )|tcenter ∈
Tl i ∧ tcontext ∈ Tl j } to obtain the training pairs for each center
POI and candidate context POI. We append these training pairs to
the final list of training data SCnaive 4 as we iterate through all
center and context POIs.

4.3 Simple Augmented Spatial Context
Within the naive spatial context the geographic component, namely
the distance, is merely used as a criteria to search the neighborhoods
and not modeled directly. In this second approach, we augment
the naive spatial context by incorporating distance decay and/or
aggregated check-in counts (as proxy for the relative popularity or
dominance). The rationale behind this approach is that we acknowl-
edge both distance and human activity as essential components in
modeling the latent representations of POI types, and, hence, want
to study how they can contribute to the final result by modeling
them both individually and in combination. Here we define pop-
ularity Pl i of a POI li as the number of total check-ins associated
with li . By augmenting the spatial context, we increase the number
of times a (tcenter , tcontext ) tuple appears in our training dataset
with a factor of β , where β ∈ {n |n ∈ Z,n ⩾ 1}.
4We use SC as an abbreviation for Spatial Context and use different subscripts to
denote different types of Spatial Contexts.

For incorporating activity alone, the factor β is defined as:

β
l j
checkin = ⌈1 + ln(1 + Pl j )⌉ (4)

where β
l j
checkin is the augmenting factor for the training tuple

(tcenter , tcontext ) when the context POI is lj . This is an extrinsic
augmentation approach.

For incorporating distance decay alone, we define the augment-
ing factor as:

β
l j
distance =

⌈
1 +

∑|L |
k=1 Plk
|L |

1 + dα (li , lj )

⌉
(5)

where |L| is the total number of POIs,d(li , lj ) is the distance between
center POI li and context POI lj , and α is an inverse distance factor,
set to 1 in our case. The numerator is a smoothing constant for a
given POI dataset. This is an intrinsic augmentation approach.

For combining both distance decay and human activities in the
spatial context, the augmenting factor, which combines both intrin-
sic and extrinsic approaches, is defined as:

β
l j
combined =

⌈1 + ln(1 + Pl j )
1 + dα (li , lj )

⌉
(6)

As one can see, the proposed augmenting factors are based on
the check-ins of the context POI as well as the distance from the
center POI to the context POI, thus incorporating more geographic
information in the spatial context. In fact, the naive spatial context
is a special case of the augmented spatial context where the factor β
equals to 1. For the simple augmented spatial contexts, our hypoth-
esis is that the popularity of a POI as a context has a positive effect
on the center POI whereas the influence of a context POI on a center
POI decreases as the distance between them increases. By setting
an augmenting factor β based on these geographic components, we
are stretching the original distribution of POI types in a manner
that reveals more latent information in geographic space. To give
an intuitive example for our rationale, a single place of the type
Stadiums & Arenas may dominate a neighborhood while many
individual parking spaces and bars only play a supportive function
despite their higher frequencies.

4.4 ITDL Augmented Spatial Context
While the simple augmented spatial context approach models dis-
tance and human activities directly, the augmenting factor only
applies to the original spatial context using the k-nearest neighbor
method. In this sense, the context POIs are limited to the k nearest
neighbors regardless of how far or how close they are from the
center POI. However, different place types are likely to follow dif-
ferent spatial distributions and form distinct spatial clusters. For
example, places of type Restaurants may be located closely to
many other places of types such as Hotels, Bars, and Department
Stores, generating a dense spatial cluster, while POI of type Police
Departments and other area-serving places will show very differ-
ent patterns when compared to nearby places (via their types). This
spatial variation means that different spatial context information
can be captured within different distances. In addition, the distance
we are focusing on rapidly increases for such types, so naively
setting a single threshold for the search buffer or the number of
nearest neighbors will result in homogeneous spatial contexts for
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Center POI

Active Life
Arts & Entertainment
Automotive
Beauty & Spas
Education
Event Planning & Services
Financial Services
Food
Health & Medical
Home Services
Hotels & Travel
Local Flavor
Local Services
Mass Media
Nightlife
Pets
Professional Services
Public Services & Government
Religious Organizations
Restaurants
Shopping
Distance Bin
Street Network

Figure 2: ITDL augmented spatial context example.

many different place types, thus sacrificing spatial heterogeneity
and numerous distinguishing geospatial semantic characteristics.
In light of this, we suggest having multiple different spatial con-
texts for each POI. Inspired by the use of semi-variograms in spatial
statistics such as Kriging, we make use of distance lags, i.e., discrete
bins, for constructing our spatial contexts. Such binning by a given
lag also adjusts for the uncertainty (also called tolerance) of place
centroids. In fact, previous work shows that the median distance
of a POI between different database providers, such as Yelp and
Foursquare, is 63 meters [17]. In the following, we will use a lag
distance of h = 100m.

We use a default distance bin width for each distance lag, thus
generating multiple spatial contexts for the same POI. Each spatial
context can be used to learn a latent representation that encodes
the distributional semantics between the center POI type and the
context POI types within said distance bin. Our rationale behind
this approach is that due to the nature (and function) of places and
their interaction with other places and regions, an all-encompassing
spatial context, even augmented with distance decay and human
activities, is not sufficient for understanding the overall variation
in the geographic patterns. Instead, we propose to first capture the
local context by dividing the continuous geographic space, namely
the distance, into discrete lags and then combine the semantic
information from these different lags to obtain a more holistic
global view of each place type; see Figure 2.

Since we aim to capture the spatial interaction between different
place types, we want to set the maximum threshold of our spatial
context based on this. We define Dt i as the set of pair-wise POI
distances of the same type ti . For each POI type ti , we calculate
the minimum intra-class distancemin(Dt i ) and use the maximum
of these intra-class distances as our threshold TS for the spatial
contexts (here the supremum of the per-type infimums):

TS =max(min(Dt1),min(Dt2),min(Dt3), ...,min(Dtn )) (7)

which is the maximum distance value, for at least one type among
all place types, to search for context POIs that will not encounter
the same type as the center. ThisTS value helps to capture as much
inter-class spatial interaction as possible. Hence, for each center
POI, there are s = ⌊TSh ⌋ spatial contexts.

For each spatial context, we propose a novel information theo-
retic, distance lagged augmentation method. The simple augmented
spatial context takes into consideration distance decay and human
activities, in the ITDL augmented spatial context, however, we fo-
cus on the human activities within the local context as well as the
uniqueness of each place types per distance bin. The first compo-
nent that incorporates human activities is defined as:

A = −loд2

(
1 −

Pt j

1 +
∑ |M |
k=1 P

h
tk

)
(8)

where Pt j is the popularity (check-in counts) of a place type tj and∑ |M |
k=1 P

h
tk is the total number of check-in counts of all place types

within a distance bin with width h. This is a monotonically increas-
ing function with respect to Pt j

1+
∑|M |
k=1 P

h
tk

, which means that if a place

type has high popularity among all place types within the bin, this
component value will be very high. The second component adopts
the idea of information content (here, surprisal) from information
theory to model the uniqueness of a place type given a distance
bin:

U = −loд2(Fht j ) (9)

where Fht j is the probability of encountering place type tj in a dis-
tance bin. U essentially represents the information content of a
place type tj within a distance bin. Larger Fht j values will result in
reduced information content. Finally, we integrate these two com-
ponents using a convex combination and our ITDL augmentation
is defined as:

β
l j
IT DL = ⌈ωA + (1 − ω)U ⌉ (10)

where ω and 1 − ω are the weights for the components. Intuitively,
this allows us to distinguish unique places (of a certain type) that
are highly popular from places that are popular in virtue of their
type. Algorithm 1 shows the detailed procedures to construct the
ITDL augmented spatial context SCIT DL . In order to improve the
efficiency of this algorithm, we split the whole task into s tasks
that can run in parallel, thus each worker only constructs a spatial
context for one distance bin. In short, for the ITDL augmentation
method, we use individual context settings to capture extrinsic
components such as the popularity and the uniqueness of place
types and use multiple spatial context bins combined to capture
the intrinsic components such as distance and spatial variation.

5 EVALUATION SCHEMES
In this section, we introduce three different ground truths that we
establish to evaluate our proposed methods. These ground truth
results can also be used to evaluate other tasks involving place
type similarity and relatedness. The first ground truth is built from
the original Yelp place type hierarchy.5 We take advantage of this
top-down hierarchy and evaluate to what degree our bottom-up
approaches can approximate Yelp’s hierarchy. The second ground
truth is obtained using Human Intelligence Tasks (HIT) via Amazon
Mechanical Turk which is a binary test. The third one is obtained
from another HIT which provides similarity and relatedness rank-
ings for different POI types. These three ground truth results, one

5https://www.yelp.com/developers/documentation/v3/all_category_list/categories.json
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Algorithm 1: Constructing ITDL-based Augmented Spatial
Contexts SCIT DL
Input :L = (N ,G,T ), s , h, ω
Output :SCIT DL

1 SCIT DL B initialize list
2 foreach li ∈ L do
3 Tl i B a set of place types associated with li
4 for n = 0;n < s;n++ do
5 sc B check-in total of all place types in bin n

6 sp B POI total of all place types in bin n

7 foreach lj ∈ L do
8 Tl j B a set of place types associated with lj
9 if nh ⩽ d(li , lj ) < (n + 1)h then

10 foreach tki ∈ Tl i do
11 foreach tk j ∈ Tl j do
12 cc B check-in of tk j
13 cp B count of tk j
14 A B −loд2(1 − cc/sc)
15 U B −loд2(cp/sp)
16 auд B ceil(ωA + (1 − ω)U )
17 append tuple (tki , tk j ) to SCnITDL auд

times
18 end
19 end
20 end
21 end
22 end
23 end

using top-down information from Yelp and the other two provided
by human judges, provide a comprehensive evaluation for our work.

5.1 Hierarchy-based Evaluation Scheme
The original Yelp categories provide us with a natural way to calcu-
late the similarity and relatedness of different POI types based on
their hierarchical structure. There are two major ways to measure
(semantic) similarity and relatedness for our tasks: distribution-
based measures and knowledge-based measures [7]. While our
proposed methods aims to capture the distributional semantics,
the evaluation scheme derived from Yelp categories falls into the
knowledge-based measures group. Numerous models have been
proposed for such measures. In summary, edge-based measures
and information content-based measures are two widely-used sub-
groups. In our study, we choose two measures from each subgroup
to form our evaluation scheme. In addition, since the information
content-based measures depend on the definition of information
content, we also select two different definitions of information con-
tent in order to provide a more holistic evaluation scheme. In the
end, we have 6 different measurements based on the Yelp hierarchy.

The first edge-based measurement is proposed by Wu & Palmer
[27], which is defined as:

SIMWP (t1, t2) =
2N3

N1 + N2 + 2N3
(11)

tlcs is defined as the least common superclass of place types t1
and t2. N1 is the shortest path from t1 to tlcs . N2 is the short-
est path from t2 to tlcs . N3 is the shortest path from tlcs to root.
The second edge-based measurement is proposed by Leakcock &
Chodorow [13]:

SIMLC (t1, t2) = −loд
( N
2D

)
(12)

where D is the maximum depth of the taxonomy and N is the
shortest path between place types t1 and t2.

For the information content-based measurements, we use the
models proposed by Lin [15] and Jiang & Conrath [11]. Their def-
initions are shown in Eq. 13 and Eq. 14, respectively. IC is the
information content of each place type and tlcs is the least common
superclass of place types t1 and t2 within the Yelp hierarchy. Jiang
& Conrath’s method calculates the distance between t1 and t2, so
the similarity is equal to SIM JC (t1, t2) = 1/DIS JC (t1, t2).

SIMLin (t1, t2) =
2IC(tlcs )

IC(t1) + IC(t2)
(13)

DIS JC (t1, t2) = IC(t1) + IC(t2) − 2IC(tlcs ) (14)
Both models proposed by Lin and Jiang & Conrath depend on the

definition of information content, so we also include two different
definitions of information content that can be calculated from the
place type hierarchy. The information content proposed by Sánchez
et al. [24] is defined as:

ICSanchez = −loд
( |leaves(ti ) |
|subsumers(ti ) | + 1

max_leaves + 1

)
(15)

where |leaves(ti )| is the number of leaves of place type ti in the
hierarchy, |subsumers(ti )| is the number of place types that are
more general than ti in the hierarchy andmax_leaves is the number
of leaves for the root place type. The information content proposed
by Seco et al. [25] is defined as:

ICSeco = 1 − loд(|hypo(ti )| + 1)
loд(max_types) (16)

where |hypo(ti )| is the number of POI types that are more specific
than ti and max_types is the maximum number of types in the
hierarchy. Combining these definitions of information content with
the methods by Lin and Jiang & Conrath, leads to four measures.

By using these semantic similarity measures, we calculate the
pair-wise similarity of Yelp place types. Because these six measures
differ in terms of what they measure, the resulting scores are also
slightly different. Based on the similarity scores, for each place type,
we generate a ranking of similar place types from themost similar to
the least similar. We obtain six different groups of rankings for each
of the POI types in Yelp. To confirm the validity of this evaluation
scheme, we use Kendall’s coefficient of concordanceW to assess
the agreement among these six groups of rankings. The average
Kendall’sW of all (1030) place types 6 among the six measurements
is 0.981, indicating a nearly perfect agreement among measures.
Moreover, in our experiment, we use a subset of 93 place types
(see Section 6) and the concordance remains stable at 0.979. This
result implies that our evaluation scheme based on the place type
6We only consider 570 place types, namely those that have at least 14 instances in our
dataset and use various subsets of these 570 types in our experiments.
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Figure 3: Binary HIT example.

hierarchy is valid. To evaluate the result, we mimic the task of
geographic information retrieval, e.g. finding the most similar place
type based on a given place type. By choosing the first place type
in each of the 1030 rankings, we can obtain the result for all six
measurements. To evaluate our latent representations, we generate
our own rankings of each place type based on the augmented spatial
contexts using pair-wise similarity 7 and use Mean Reciprocal Rank
(MRR) to test the performance of our methods.

5.2 Binary HIT Evaluation Scheme
The hierarchy-based evaluation scheme has some potential draw-
backs. First, the hierarchy is created by a small set of people which
may lead to a bias. Moreover, in this hierarchy of more than 1000
place types (nodes), the average path length is only 1.73 which
indicates that the taxonomy is very shallow. This will result in ties
in the rankings generated using the hierarchical structure. Finally,
a hierarchy always encodes some underlying ontological commit-
ments, e.g., grouping arts and entertainment in a common class.
Hence, in addition to the hierarchy-based evaluation, we utilize
Amazon’s Mechanical Turk for a binary HIT evaluation scheme.

For the HIT task, we generate 80 triplets with each element in
the triplet being a place type. For example, one of the triplets is
(Dentists, Education, Orthodontists). 8 The task is to choose
the place type from each triplet that is most dissimilar from the
other two. For each place type in the triplet, a human judge will
make a binary decision; see Figure 3. We published the HIT task on
Amazon Mechanical Turk and each of these 80 tests was done by
25 human workers. The final result of each test is determined by
the mode answer of the 25 human workers. For instance, the final
answer for the test (Dentists, Education, Orthodontists) is
Education as this is the most often excluded type.

To evaluate the latent representations generated by augmented
spatial contexts, for each triplet, we calculate the pair-wise sim-
ilarity score using 2-combination. For example, for the above
mentioned triplet, we calculate the similarity scores of three
pairs (Dentists, Education), (Dentists, Orthodontists)
and (Education, Orthodontists). We pick the onewith the high-
est score and return the other place type as the result for this test
using our methods. For instance, if (Dentists, Orthodontists)
has the highest score, then Education is the result from our meth-
ods. We evaluate the accuracy of different methods on all triplets.

5.3 Ranking-based HIT Evaluation Scheme
While the binary-based HIT evaluation can complement the Yelp
hierarchy task by relying on human judges, the task is relatively
easy. Hence, for the ranking-based HIT evaluation scheme, we want
to use human judges to generate a ranking result for each place type.
7All similarity scores for our place type embeddings are calculated using Cosine
Similarity.
8See Goodman’s deliberation on similarity for a rationale about using triples [6].

Figure 4: Ranking-based HIT, showing one MTurk result.

We selected 10 place types and for each place type we selected 7
candidate place types for ranking, so altogether we have 70 POI type
pairs. We ask 25 human judges on Amazon Mechanical Turk to rate
on a scale of 1-7 the similarity of each of these pairs. Such task can be
considered as very challenging in the context of studying semantic
similarity [10] and requires more attention to user interface design
(Fig. 4) to adjust for some well-known characteristics of human
similarity judgments, notably that such judgments are known to
be non-symmetric. In addition, we selected a slider-based design to
ease visual comparison between pairs; see [6].

After receiving the results, we have rankings of each place type
from 25 human judges. In order to check if the rankings are consis-
tent, and, thus, whether the task is meaningful, we use Kendall’s co-
efficient of concordanceW to evaluate the agreement score among
the judges. The average Kendall’sW score over all place types in
the test is 0.79 which indicates very high agreement.

In order to evaluate our place embeddings using the proposed
augmented spatial contexts, we generate a ranking for each place
type based on the pair-wise similarity score. We then calculate
the average Spearman’s rank correlation coefficient between our
rankings and the rankings from the HIT task as the criteria to
evaluate the performance of our models.

6 EXPERIMENT AND RESULT
In this section, we discuss the experiments to evaluate our work
and their results. We also point to an interesting research question
that arises from our work. First, we have to define the number of
dimensions for the POI type embeddings. Next, we compare our em-
beddings with the state-of-the-art word embeddings trained from
the Google News corpus as a baseline using the proposed evaluation
schemes in order to reiterate the necessity of augmenting spatial



SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA B. Yan et al.

Dimension
10 20 30 40 50 60 70 80 90 100

M
ea

n 
R

ec
ip

ro
ca

l R
an

k

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Wu & Palmer
Leacock & Chodorow
Lin (Sanchez et al.)
Lin (Seco et al.)
Jiang & Conrath (Sanchez et al.)
Jiang & Conrath (Seco et al.)

Dimension
10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Dimension
10 20 30 40 50 60 70 80 90 100

S
pe

ar
m

an
's

 r
ho

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

Figure 5: Left to right, Mean Reciprocal Rank (MRR) for the hierarchy-based evaluation, accuracy for the binary HIT evalua-
tion, and Spearman’s ρ for the ranking-based HIT evaluation.

contexts to obtain richer semantic information from geographic
space. In addition, we visualize and analyze different embeddings
spaces from different augmented spatial contexts using dimension
reduction techniques and present place type profile as a visual assis-
tance tool for understanding place type similarity and relatedness.
Finally, we briefly look at a very interesting research question that
arises from our work, namely whether there is potential for com-
pression by merely using a subset of POI types to learn all POI
types. From an urban planning perspective, this question can also
be framed from a summarization perspective, by asking whether
there are certain place types that are indicative of a neighborhood
(when modeled as a set of POI) .

6.1 Selecting Dimensions
An important parameter for latent representation models is the
number of dimensions for the embedding vectors. As the total num-
ber of place types is relatively small compared with the vocabulary
size of natural language, we selected dimensions ranging from 10
to 100 with a step interval of 10 to determine the number of optimal
dimensions for our model. Since we want to combine both intrin-
sic and extrinsic information in our spatial context, we focus on
using the augmenting factor βl jcombined in this task, which takes
into consideration the influence of geographic distance and POI
popularity. Figure 5 shows the dimension test result using the Yelp
hierarchy-based evaluation scheme, the binary HIT test, and the
ranking-based HIT. Although there is a variation in the absolute
values of the six measurements, the overall trend is very similar. It
shows that using 70 dimensions yields the best overall results and
we will use this number for the experiments described below.

6.2 Comparison
By introducing the augmented spatial contexts, we want to demon-
strate the richness of semantic information latently encoded in geo-
graphic patterns. First, to justify the need for POI type embeddings,
we compare the evaluation results of the word embeddings trained
from the Google News corpus with the place type embeddings
trained from Yelp POIs and our augmented spatial contexts. Word
embeddings have been used in a variety of information retrieval
tasks and have been frequently used as proxies for geographic
information retrieval. Many of the word embeddings techniques,
however, only consider unigrams, such as the pre-trainedWord2Vec

embeddings from Google, which means that they are not suitable
for many place type names, such as Auto Repair. In addition, and
as argued above, geographic space is inherently different fromword
space, and, thus, word embeddings lack the ability to capture spa-
tial interaction among different geographic entities and distance
(decay) effects which is a significant factor in measuring place type
similarity and relatedness.

In order to support our argument, we compared the word em-
beddings with the proposed place type embeddings using different
spatial contexts, namely one with the naive spatial context and four
with the augmented spatial contexts. Recall that there is a weight
parameter ω in the ITDL augmented spatial contexts, to adjust the
relative importance of A (activity) and U (uniqueness). We tested
our model with ω values ranging from 0.1 to 1 with 0.1 as step in-
terval. OurTS value is 2644.5 meters, so the total number of spatial
contexts for each ω value for the ITDL approach and a lag of 100m
is s = ⌊2644.5/100⌋ = 26. In the end, we can obtain 234 different
augmented spatial contexts and learn place type embeddings from
each of these contexts using parallel threads. In order to compare
the evaluation results, for each ω value, we test the performance
of each of the 26 bins and concatenate the embedding vectors of
the top five bins to generate the final place type embedding of 350
dimensions. We use the best ω values as our final result of the ITDL
augmented spatial contexts.

We compared the pre-trained Google Word2Vec result with our
place type embeddings using both the hierarchy-based evalua-
tion scheme and the binary HIT evaluation scheme. SCnaive is
the spatial context without augmentation. SCcheckin , SCdistance ,
SCcombined and SCIT DL are the methods detailed in Section 4.
Table 1 shows the result of the hierarchy-based evaluation. As men-
tioned earlier, word embeddings trained using Google News corpus
only contain unigrams, so we select a subset (93 place types) as
our testing data. All methods are tested using the six measures
described in Section 5. Table 2 shows the binary and ranking-based
HIT results. The hierarchy and binary evaluations show that the
results obtained by using spatial contexts, even without any aug-
mentation, are substantially better than the one purely based on
a linguistic perspective, thereby also showing the benefits of our
approach over previous work outlined in Section 2. This confirms
our hypothesis that geographic space carries rich latent seman-
tic information that cannot be captured by the word space alone.
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Table 1: Mean Reciprocal Rank for the hierarchy-based evaluation.

Model SIMWP SIMLC SIMLin (ICSanchez ) SIMLin (ICSeco ) SIM JC (ICSanchez ) SIM JC (ICSeco )
Word2Vec 0.288 0.321 0.354 0.334 0.349 0.333
SCnaive 0.412 0.398 0.474 0.442 0.455 0.478
SCcheckin 0.385 0.387 0.448 0.428 0.452 0.474
SCdistance 0.381 0.396 0.458 0.426 0.443 0.458
SCcombined 0.420 0.418 0.478 0.435 0.462 0.482
SCIT DL 0.447 0.431 0.498 0.479 0.487 0.483

For the ranking-based evaluation scheme, we dropped the Google
Word2Vec embeddings to be able to use bigrams and because using
a merely linguistic context already did not perform well for the two
simpler tasks. In all three evaluations the ITDL augmented spatial
contexts is able to model more semantic information, and, thus,
yields better results for the place type similarity tests. With a ρ of
0.7, i.e., a strong correlation with human judgments, and an accu-
racy of 0.95 this becomes most apparent for the more difficult HITs.
This is a remarkable result as humans utilize substantially richer
information to reason about similarity, e.g., the meaning (and simi-
larity) of the type labels, background knowledge, e.g., about cultural
and historic reasons why Asian foods are alike, and so forth. Finan-
cially, it is worth mentioning that short as well as long-distance
bins contribute to these results, e.g., the highest ρ is obtained by a
concatenation of bins 4-17-1-5-24 (ω = 0.1), where 24 represents
the 100m distance lag at 2400 meters from the center POI.

Table 2: Accuracy for binaryHIT evaluation and Spearman’s
ρ for ranking-based HIT.

Model Accuracy
Word2Vec 0.750
SCnaive 0.850
SCcheckin 0.700
SCdistance 0.875
SCcombined 0.875
SCIT DL 0.950

Model ρ

SCnaive 0.56
SCcheckin 0.56
SCdistance 0.57
SCcombined 0.51
SCIT DL 0.70

6.3 Place Type Profiles
Although we use the concatenated place type embeddings in our
evaluation, individual augmented spatial context can be used sepa-
rately for analyzing the characteristics of different place types. Here
we propose a 3D visualization, namely place type profile as a tool to
compare different POI types and their semantic relationships. We
use t-Distributed Stochastic Neighbor Embedding (t-SNE) [16] to
reduce our place type embeddings in each distance bin into two
dimensions, then stack each of these 2D space together to build a
3D profile. Figure 6 shows the profiles of selected types generated
with ω = 0.5, the x-axis and y-axis are the two components after
dimension reduction using t-SNE and the z-axis is the distance bin.

One can see that Bars, Restaurants and Hotels always clus-
ter together no matter which distance bin they are in. Police
Departments are a certain distance apart in each bin. Health &
Medical remains far away from all other POI types. This pattern
shows that Bars, Restaurants, and Hotels have very similar con-
texts in each distance bin, which implies that they interact in similar
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Figure 6: Place Type Profile with ω = 0.5.

Table 3: Place type compression result.

Model Accuracy ρ

All Place Types 0.950 0.70
W/O Restaurants 0.925 0.70
W/O Nightlife 0.925 0.70

W/O Professional Services 0.925 0.68
W/O Health & Medical 0.900 0.68
W/O 18 Place Types 0.875 0.59

ways with other POI type. We will return to this argument when
discussing compression potential next.

6.4 Place Type Compression
So far, our experiments are all based on all POI types, which means
that we generate our training data for each augmented spatial
context using all types and run the latent representation model to
retrieve place type embeddings. However, this approach is time-
consuming as the number of (tcenter , tcontext ) pairs increases in
later distance bins and may also lead to overfitting. In order to
obtain more condensed results, we proposed the novel idea of place
type compression. Our intuition is that many place types such as
Restaurants and Nightlife are co-located with other types (via
their POI) following similar patterns. Hence, our hypothesis is that
these types can serve as proxies in the sense that we can omit,
for instance, all nightlife places (and places of their 17 subtypes)
and still learn good embeddings for all types including Nightlife.
Some place types such as Professional Services have weaker
interaction patterns with other place types, thus making it harder
to represent them by other POI types.

In order to test our hypothesis, we select four different root
place types: Restaurants, Nightlife, Professional Services,
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and Health & Medical. We remove each of these place types and
their subtypes from the context POI types in our training and run
our models using the ITDL augmented spatial contexts. In addition,
we run our model by removing all 18 place types aside of those four
(there are 22 root place types). The accuracy result of the binary
HIT evaluation and the Spearman’s ρ result of the ranking-based
HIT are shown in Table 3. The result shows that dropping either
Restaurants or Nightlife does not have much effect on the final
embeddings while dropping either Professional Services or
Health & Medical will result in a (small) decrease in performance.
Consequently, given the 570 studied types, removing even 69 from
them, e.g., by removing the Restaurants supertype, leaves us with
enough proxy types, i.e., types that interact with other types in
similar ways. Dropping 18 place supertypes, however, and trying
to generate embeddings merely on the 4 remaining supertypes will
result in a substantial decrease. This confirms our hypothesis that
we can compress our model and still obtain high-quality latent
representations of place types.

7 CONCLUSION AND FUTUREWORK
In this research we proposed a novel approach, namely augmented
spatial contexts, to capture the semantics of place types by learn-
ing vector embeddings and using them to reason about place type
similarity and relatedness, a common prerequisite for geographic
information retrieval. By comparing the place type embeddings
generated using the proposed methods with state-of-the-art word
embeddings, we were able to show that our information-theoretic,
distance lagged augmented spatial contexts substantially outper-
form the baseline and better capture the latent semantic information.
We also established three different evaluation schemes to system-
atically evaluate the resulting POI embeddings. We published the
embeddings as well as the HIT results online to foster reproducibil-
ity and in the hope that they will be reusable by others working on
vector representations of place types. We used place type profiles
as a way to visualize the semantic relationship among different
place types. Finally, we outlined the idea of indicative POI types
and their usage in compression as a novel research avenue.

In the future, we will explore place type compression in more
detail to determine how different combinations of POI types can
affect the quality of the overall place type embeddings and will
follow up on the idea of using them to summarize neighborhoods.
Finally, we focused on geodesic distance here but our methods can
be generalized, e.g., using L1 distance (taxicab), in future work.
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