
Contextual Graph Attention for Answering LogicalQueries over
Incomplete Knowledge Graphs

Gengchen Mai, Krzysztof Janowicz, Bo Yan, Rui Zhu, Ling Cai, Ni Lao
STKO Lab, UCSB

{gengchen_mai,jano,boyan,ruizhu,lingcai}@geog.ucsb.edu
SayMosaic Inc.

ni.lao@mosaix.ai

ABSTRACT
Recently, several studies have explored methods for using KG em-
bedding to answer logical queries. These approaches either treat
embedding learning and query answering as two separated learn-
ing tasks, or fail to deal with the variability of contributions from
different query paths. We proposed to leverage a graph attention
mechanism [20] to handle the unequal contribution of different
query paths. However, commonly used graph attention assumes
that the center node embedding is provided, which is unavailable in
this task since the center node is to be predicted. To solve this prob-
lem we propose a multi-head attention-based end-to-end logical
query answering model, called Contextual Graph Attention model
(CGA), which uses an initial neighborhood aggregation layer to gen-
erate the center embedding, and the whole model is trained jointly
on the original KG structure as well as the sampled query-answer
pairs. We also introduce two new datasets, DB18 and WikiGeo19,
which are rather large in size compared to the existing datasets
and contain many more relation types, and use them to evaluate
the performance of the proposed model. Our result shows that the
proposed CGA with fewer learnable parameters consistently out-
performs the baseline models on both datasets as well as Bio [5]
dataset.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; Neural networks.

KEYWORDS
Knowledge Graph Embedding, Logical Query Answering, Multi-
head Attention Model

1 INTRODUCTION
Knowledge graphs represent statements in the form of graphs in
which nodes represent entities and directed labeled edges indi-
cate different types of relations between these entities [12]. In the
past decade, the Semantic Web community has published and inter-
linked vast amounts of data on theWeb using the machine-readable
and reasonable Resource Description Framework (RDF) in order
to create smart data [?]. By following open W3C standards or
related proprietary technology stacks, several large-scale knowl-
edge graphs have been constructed (e.g., DBpedia, Wikidata, NELL,
Google’s Knowledge Graph and Microsoft’s Satori) to support ap-
plications such as information retrieval and question answering
[3, 10].

Despite their size, knowledge graphs often suffer from incom-
pleteness, sparsity, and noise as most KGs are constructed collabo-
ratively and semi-automatically [23]. Recent work studied different
ways of applying graph learning methods to large-scale knowledge
graphs to support completion via so-called knowledge graph em-
bedding techniques such as RESCAL [16], TransE [4], NTN [18],
DistMult [24], TransR [11], and HOLE [15]. These approaches aim
at embedding KG components including entities and relations into
continuous vector spaces while preserving the inherent structure
of the original KG [22]. Although these models show promising
results in link prediction and entity classification tasks, they all
treat each statement (often called triple) independently, thereby
ignoring the correlation between them. In addition, since the model
needs to rank all entities for a given triple in the link prediction
task, their complexity is linear with respect to the total number of
entities in the KG, which makes it impractical for more complicated
query answering tasks.

Recent work [5, 13, 21] has explored ways to utilize knowledge
graph embedding models for answering logical queries from in-
complete KG. The task is to predict the correct answer to a query
based on KG embedding models, even if this query cannot be an-
swered directly because of one or multiple missing triples in the
original graph. For example, Listing 1 shows an example SPARQL
query over DBpedia which asks for the cause of death of a person
whose alma mater was UCLA and who was a guest of Escape Clause.
Executing this query via DBpedia SPARQL endpoint1 yields one
answer dbr:Cardiovascular_disease and the corresponding
person is dbr:Virginia_Christine. However, if the triple (dbr:
Virginia_Christine dbo:deathCause dbr:Cardiovascular_

disease) is missing, this query would become an unanswerable
one [13] as shown in Figure 1. The general idea of query answering
via KG embedding is to predict the embedding of the root variable
?Disease by utilizing the embeddings of known entities (e.g. UCLA
and EscapeClause) and relations (deathCause, almaMater and
guest) in the query. Ideally, a nearest neighbor search in the entity

1https://dbpedia.org/sparql

https://dbpedia.org/sparql

UCLA

Escape
Clause

?Person ?Disease

Guest

AlmaMaster -1 DeathCause

T1

T2

T3

?Disease .∃?Person : AlmaMater−1 (UCLA, ?Person)∧
Guest (EscapeClause, ?Person)∧
DeathCause (?Person, ?Disease)

UCLA

Escape
Clause

Virginia
Christine

Cardiovascular
Disease

Guest

AlmaMater ­1 DeathCause

DeathCause

Alm
aM
ate
r­
1 Peter

Brown
Parkinson's
disease

Figure 1: Top box: Conjunctive GraphQuery (CGQ) andDAG
of the query structure. Below: the matched underlining KG
patterns represented by solid arrows.

embedding space using the predicted variable’s embedding yields
the approximated answer.

SELECT ?Disease
WHERE {
?Person dbo:deathCause ?Disease.
?Person dbo:almaMater dbr:

↪→ University_of_California,
↪→ _Los_Angeles .

dbr:Escape_Clause dbo:guest ?Person .
}

Listing 1: An example SPARQL query over DBpedia

Hamilton et al. [5] and Wang et al. [21] proposed different ap-
proaches for predicting variable embedding. However, an unavoid-
able step for both is to integrate predicted embeddings for the same
variable (in this query ?Person) from different paths (triple T1 and
T2 in Fig. 1) by translating from the corresponding entity nodes
via different relation embeddings. In Figure 1, triple T1 and T2 will
produce different embeddings p1 and p2 for variable ?Person and
they need to be integrated to produce one single embedding p for
?Person. An intuitive integration method is an element-wise mean
operation over p1 and p2. This implies that we assume triple T1
and T2 have equal prediction abilities for the embedding of ?Person
which is not necessarily true. In fact, triple T1 matches 450 triples
in DBpedia while T2 only matches 5. This indicates that p2 will be
more similar to the real embedding of ?Person because T2 has more
discriminative power.

Wang et al. [21] acknowledged this unequal contribution from
different paths and obtained the final embedding p as a weighted
average of p1 and p2 while the weight is proportional to the inverse
of the number of triples matched by triple T1 and T2. However, this
deterministic weighting approach lacks flexibility and will produce
suboptimal results. Moreover, they separated the knowledge graph
embedding training and query answering steps. As a result, the KG

embedding model is not directly optimized on the query answering
objective which further impacts the model’s performance.

In contrast, Hamilton et al. [5] presented an end-to-endmodel for
KG embedding model training and logical query answering. How-
ever, they utilized a simple permutation invariant neural network
[25] to integrate p1 and p2 which treats each embedding equally.
Furthermore, in order to train the end-to-end logical query answer-
ing model, they sampled logical query-answer pairs from the KG
as training datasets while ignoring the original KG structure which
has proven to be important for embedding model training based
on previous research [9].

Based on these observations, we hypothesis that a graph atten-
tion network similar to the one proposed by Veličković et al. [20]
can handle these unequal contribution cases. However, Veličković
et al. [20] assume that the center node embedding (the variable
embedding of ?Person in Fig. 1), known as the query embedding [19],
should be known beforehand for attention score computing which
is unknown in this case. This prevents us from using the normal
attention method. Therefore, we propose an end-to-end attention-
based logical query answering model over knowledge graphs in
which the situation of unequal contribution from different paths
to an entity embedding is handled by a new attention mechanism
[2, 19, 20] where the center variable embedding is no longer
a prerequisite. Additionally, the model is jointly trained on both
sampled logical query-answer pairs and the original KG structure
information. The contributions of our work are as follows:

(1) We propose an end-to-end attention-based logic query an-
swering model over knowledge graphs in which an attention
mechanism is used to handle the unequal contribution of
neighboring entity embeddings to the center entity embed-
ding. To the best of our knowledge, this is the first attention
method applicable to logic query answering.

(2) We show that the proposed model can be trained jointly on
the original KG structure and the sampled logical QA pairs.

(3) We introduce two datasets - DB18 and WikiGeo19 - which
have substantially more relation types (170+) compared to
the Bio dataset [5].

The rest of this paper is structured as follows. We first introduce
some basic notions in Section 2 and present our attention-based
query answering model in Section 3. In Section 4, we discuss the
datasets we used to evaluate our model and present the evaluation
results. We conclude our work in Section 5.

2 BASIC CONCEPTS
Before introducing our end-to-end attention-based logical query
answering model, we outline some basic notions relevant to Con-
junctive Graph Query models.

2.1 Conjunctive Graph Queries (CGQ)
In this work, a knowledge graph (KG) is a directed and labeled
multi-relational graph G = (V,R) where V is a set of entities
(nodes), R is the set of relations (predicates, edges); furthermore
let T be a set of triples. A triple Ti = (hi , ri , ti) or ri (hi , ti) in this

sense consists of a head entity hi and a tail entity ti connected by
some relation ri (predicate).2

Definition 2.1 (Conjunctive Graph Query (CGQ)). A query q ∈
Q (G) that can be written as follows:

q = V?.∃V1,V2, ..,Vm : b1 ∧ b2 ∧ ... ∧ bn
where bi = r (ek ,Vl),Vl ∈ {V?,V1,V2, ..,Vm }, ek ∈ V, r ∈ R

or bi = r (Vk ,Vl),Vk ,Vl ∈ {V?,V1,V2, ..,Vm },k , l , r ∈ R

Here V? denotes the target variable of the query which will be
replaced with the answer entity, whileV1,V2, ..,Vm are existentially
quantified bound variables. bi is a basic graph pattern in this CGQ.
To ensure q is a valid CGQ, the dependence graph of q must be a
directed acyclic graph (DAG) [5] in which the entities (anchor nodes)
ek in q are the source nodes and the target variableV? is the unique
sink node.

Figure 1 shows an example CGQ which is equivalent to the
SPARQL query in Listing 1, where ?Person is an existentially quanti-
fied bound variable and ?Disease is the target variable. Note that for
graph pattern r (s,o) where subject s is a variable and object o is an
entity, we can convert it into the form bi = r (ek ,Vl) by using the in-
verse relation of the predicate r . In other words, we convert r (s,o) to
r−1 (o, s). For example, In Figure 1, we useAlmaMater−1 (UCLA, ?Person)
to represent the graph pattern AlmaMater (?Person,UCLA). The
benefit of this inverse relation conversion is that we can construct
CGQ where the dependence graph is a directed acyclic graph (DAG)
as shown in Figure 1 .

Comparing Definition 2.1 with SPARQL, we can see several
differences:

(1) Predicates in CGQs are assumed to be fixed while predicates
in a SPARQL 1.1 basic graph pattern can also be variables
[13].

(2) CGQs only consider the conjunction of graph patterns while
SPARQL 1.1 also contains other operations (UNION, OP-
TION, FILTER, LIMIT, etc.).

(3) CGQs require one variable as the answer denotation, which
is in alignment with most question answering over knowl-
edge graph literature [3, 10]. In contrast, SPARQL 1.1 allows
multiple variables as the returning variables. The unique
answer variable property make it easier to evaluate the per-
formance of different deep learning models on CGQs.

2.2 Geometric Operators in Embedding Space
Here we describe two geometric operators - the projection operator
and the intersection operator - in the entity embedding space, which
were first introduced by Hamilton et al. [5].

Definition 2.2 (Geometric Projection Operator). Given an embed-
ding ei ∈ Rd in the entity embedding space which can be either an
embedding of a real entity ei or a computed embedding for an exis-
tentially quantified bound variableVi in a conjunctive query q, and
a relation r , the projection operator P produces a new embedding

2Note that in many knowledge graphs, a triple can include a datatype property as the
relation where the tail is a literal. In line with related work [14, 22] we do not consider
this kind of triples here. We will use head (h), relation (r), and tail(t) when discussing
embeddings and subject (s), predicate (p), object (o) when discussing Semantic Web
knowledge graphs to stay in line with the literature from both fields.

e′i = P (ei , r) where e′i ∈ R
d . The projection operator is defined as

follows:
e′i = P (ei , r) = Rr ei (1)

where Rr ∈ Rd×d is a trainable and relation-specific matrix for re-
lation type r . The embedding e′i = P (ei , r) denotes all entities that
connect with entity ei or variable Vi through relation r . If embed-
ding ei denotes entity ei , then e′i = P (ei , r) denotes {ek |r (ei , ek) ∈
G}. If embedding ei denotes variableVi , then e′i = P (ei , r) denotes
{ek |ej ∈ Vi ∧ r (ej , ek) ∈ G}.

In short, e′i = P (ei , r) denotes the embedding of the relation r
specific neighboring set of entities. Different KG embedding models
have different ways to represent the relation r . We can also use
TransE’s version (e′i = ei + r) or a diagonal matrix version (e′i =
diaд(r)ei , where diaд(r) is a diagonal matrix parameterized by
vector r in its diagonal axis). The bilinear version shown in Equation
1 has the best performance in logic query answering because it is
more flexible in capturing different characteristics of relation r [5].

As for the intersection operator, we first present the original
version from Graph Query Embedding (GQE) [5], which will act as
baseline for our model.

Definition 2.3 (Geometric Intersection Operator). Assume we are
given a set of n different input embeddings e′1, e′2, ..., e′i ,..., e′n as
the outputs from n different geometric projection operations P by
following n different relation r j paths. We require all e′i to have the
same entity type. The geometric intersection operator outputs one
embedding e′′ based on this set of embeddings which denotes the
intersection of these different relation paths:

e′′ = IGQE ({e′1, e′2, ..., e′i , ..., e′n }) =Wγ 1Ψ(ReLU (Wγ 2 e′i), ∀i ∈ {1, 2, .., n }) (2)

where Wγ 1,Wγ 2 ∈ Rd×d are trainable entity type γ specific
matrices. Ψ() is a symmetric vector function (e.g., an element-
wise mean or minimum of a set of vectors) which is permuta-
tion invariant on the order of its inputs [25]. As e′1, e′2, ..., e′i ,...,
e′n represent the embeddings of the neighboring set of entities,
e′′ = IGQE ({e′1, e

′
2, ..., e

′
i , ..., e

′
n }) is interpreted as the intersection

of these sets.

2.3 Entity Embedding Initialization
Generally speaking, any (knowledge) graph embedding model can
be used to initialize entity embeddings. In this work, we adopt
the simple “bag-of-features” approach. We assume each entity ei
will have an entity type γ = Γ(ei), e.g. Place, Agent. The entity
embedding lookup is shown below:

ei =
Zγ xi

∥ Zγ xi ∥L2
(3)

Zγ ∈ Rd×mγ is the type-specific embedding matrices for all
entities with type γ = Γ(ei) which can be initialized using a normal
embedding matrix normalization method. The xi is a binary feature
vector such as a one-hot vector which uniquely identifies entity ei
among all entities with the same entity type γ . The ∥ · ∥L2 indicates
the L2-norm. The reason why we use type-specific embedding
matrices rather than one embedding matrix for all entities as [4, 8,
11, 15, 16, 18, 24] did is that recent node embedding work [5, 6] show
that most of the information contained in the node embeddings
is type-specific information. Using type-specific entity embedding

matrices explicitly handles this information. Note that in many KGs
such as DBpedia one entity may have multiple types. We handle
this by computing the common super class of these types (see Sec.
4).

3 METHOD
Next, we discuss the difference between our model and GQE [5].
Our geometric operators (1) use an attention mechanism to account
for the fact that different paths have different embedding prediction
abilities with respect to the center entity embedding and (2) can be
applied to two training phases – training on the original KG and
training with sampled logic query-answer pairs.

3.1 Attention-based Geometric Projection
Operator

Since the permutation invariant function Ψ() directly operates on
the set {ReLU (Wγ 2 e′i) |∀i ∈ {1, 2, ..,n}}, Equation 2 assumes that
each e′i (relation path) has an equal contribution to the final in-
tersection embedding e′′. This is not necessarily the case in real
settings as we have discussed in Section 1. Graph Attention Net-
work (GAT) [20] has shown that using an attention mechanism on
graph-structured data to capture the unequal contribution of the
neighboring nodes to the center node yields better result than a
simple element-wise mean or minimum approaches. By following
the attention idea of GAT, we propose an attention-based geometric
intersection operator.

Assume we are given the same input as Definition 2.3, a set of
n different input embeddings e′1, e′2, ..., e′i ,..., e′n . The geometric
intersection operator contains two layers: a multi-head attention
layer and a feed forward neural network layer.

3.1.1 The multi-head attention layer. The initial intersection em-
bedding e′′init is computed as:

e′′init = Ψ(e′i ,∀i ∈ {1, 2, ..,n}) (4)

Then the attention coefficient for each e′i in the kth attention
head is

αik = Ak (e
′′
init , e

′
i) =

exp (LeakyReLU (aTγk [e
′′
init ; e

′
i]))∑n

j=1 exp (LeakyReLU (aTγk [e
′′
init ; e

′
j]))

(5)

where ·T represents transposition, [;] vector concatenation, and
aγk ∈ Rd×2 is the type-specific trainable attention vector for
kth attention head. Following the advice on avoiding spurious
weights [20], we use LeakyReLu here.

The attention weighted embedding e′′attn is computed as the
weighted average of different input embeddings while weights
are automatically learned by the multi-head attention mechanism.
Here, σ () is the sigmoid activation function and K is the number
of attention heads.

e′′attn = σ (
1
K

K∑
k=1

n∑
i=1

αike′i) (6)

Furthermore, we add a residual connection [7] of e′′attn , followed
by layer normalization [1] (Add & Norm).

e′′ln1 = LayerNorm1 (e′′attn + e′′init) (7)

3.1.2 The second layer. It is a normal feed forward neural network
layer followed by the “Add & Norm” as shown in Equation 8.

e′′ = ICGA ({e′1, e′2, ..., e′i , ..., e′n }) = LayerNorm2 (Wγ e′′ln1 +Bγ + e′′ln1) (8)

where Wγ ∈ R
d×d and Bγ ∈ Rd are trainable entity typeγ specific

weight matrix and bias vector, respectively, in a feed forward neural
network.

Figure 2 illustrates the model architecture of our attention-based
geometric intersection operator. The light green boxes at the bottom
indicate n embeddings e1, e2,...,ei ,...,en , which are projected by the
geometric projection operators. The output embeddings e′1, e′2, ...,
e′i ,..., e′n are the n input embeddings of our intersection operator.
The initial intersection embedding e′′init is computed based on these
input embeddings as shown in Equation 4. Next, e′′init and e′1, e′2,
..., e′i ,..., e′n are fed into the multi-head attention layer followed by
the feed forward neural network layer. This two-layer architecture
is inspired by Transformer [19].

The multi-head attentionmechanism shown in Equation 4, 5, and
6 is similar to those used in Graph Attention Network (GAT) [20].
The major difference is the way we compute the initial intersection
embedding e′′init in Equation 4. In the graph neural network context,
the attention function can be interpreted as mapping the center node
embedding and a set of neighboring node embeddings to an output
embedding. In GAT, the model directly operates on the local graph
structure by applying one or multiple convolution operations over
the 1-degree neighboring nodes of the center node. In order to
compute the attention score for each neighboring node embedding,
each of the neighboring node embedding is compared with the
embedding of the center node for attention score computation.
Here, the center node embedding is known in advance.

However, in our case, since we want to train our model directly
on the logical query-answer pairs (query-answer pair training
phase), the final intersection embedding e′′ might denote the vari-
able in a conjunctive graph query q whose embedding is unknown.
For example, in Figure 1, we can obtain two embeddings p1 and p2
for variable ?Person by following two different triple pathT1 andT2.
In this case, the input embeddings for our intersection operator are
p1 and p2. The center node embedding here is the true embedding for
variable ?Person which is unknown. Equation 4 is used to compute
an initial embedding for the center node, the variable ?Person, in
order to compute the attention score for each input embedding.

Note that these two intersection operators in Definition 2.3 and
Section 3.1 can also be directly applied to the local knowledge graph
structure as R-GCN [17] does (original KG training phase). The
output embedding e′′ can be used as the new embedding for the
center entity which is computed by a convolution operation over
its 1-degree neighboring entity-relation pairs. In this KG training
phase, although the center node embedding is known in advance,
in order to make our model applicable to both of these two training
phases, we still use the initial intersection embedding idea. Note that
the initial intersection embedding computing step (see Equation
4) solves the problem of the previous attention mechanism where
the center node embedding is a prerequisite for attention score
computing. This makes our graph attention mechanism applicable
to both logic query answering and KG embedding training. As far
as we know, it is the first graph attention mechanism applied on
both tasks.

Neighbor
Embedding e1

Projected Neighbor
Embedding e'1

Neighbor
Embedding e2

Projected Neighbor
Embedding e'2

Neighbor
Embedding en

Projected Neighbor
Embedding e'n

. . .
Initial Intersection
Embedding e''attn

Multi-Head
Attention

Min/Mean

Add & Norm

Feed Forward
Neural Network

Add & Norm

Figure 2: The attention-based geometric intersection opera-
tor - model architecture

3.2 Model Training
The projection operator and intersection operator constitute our
attention-based logical query answering model. As for the model
training, it has two training phases: the original KG training phase
and the query-answer pair training phase.

3.2.1 Original KG Training Phase. In original KG training phase,
we train those two geometric operators based on the local KG
structure. Given a KG G = ⟨V,R⟩, for every entity ei ∈ V , we use
the geometric projection and intersection operator to compute a
new embedding e′′i for entity ei given its 1-degree neighborhood
N (ei) = {(rui , eui) |rui (eui , ei) ∈ G} ∪ {(r

−1
oi , eoi) |roi (ei , eoi) ∈ G}

which is a sampled set of neighboring entity-relation pairs with size
n. Here, I () indicates either IGQE () (baseline model) or ICGA ()
(proposed model).

e′′i = HKG (ei) = I ({P (eci , rci) |(rci , eci) ∈ N (ei)}) (9)

Let ei indicates the true entity embedding for ei and e−i indicates
the embedding of a negative sample e−i ∈ Neд(ei), where Neд(ei)
is the negative sample set for ei . The loss function for this KG
training phase is a max-margin loss:
LKG =

∑
ei ∈V

∑
e−i ∈Neд (ei)

max (0, ∆ − Φ(HKG (ei), ei) + Φ(HKG (ei), e−i)) (10)

Here ∆ is margin and Φ() denote the cosine similarity function:

Φ(q, a) =
q · a

∥ q ∥∥ a ∥
(11)

3.2.2 Logical Query-Answer Pair Training Phase. In this training
phase, we first sample Q different conjunctive graph query (logical
query)-answer pairs S = {(qi ,ai)} from the original KG by sampling
entities at each node in the conjunctive query structure according
to the topological order (See Hamilton et al. [5]). Then for each
conjunctive graph query qi with one or multiple anchor nodes
{ei1, ei2, .., ein }, we compute the embedding for its target variable
node Vi?, denote as qi , based on two proposed geometric operators
(See Algorithm 1 in Hamilton et al. [5] for a detailed explanation).

We denote the embedding for the correct answer entity as ai and the
embedding for the negative answer as a−i where a−i ∈ Neд(qi ,ai).
The loss function for this query-answering pair train phase is:

LQA =
∑

(qi ,ai)∈S

∑
a−i ∈Neд (qi ,ai)

max (0, ∆ − Φ(qi , ai) + Φ(qi , a−i)) (12)

3.2.3 Negative Sampling. As for negative sampling method, we
adopt two methods: 1) negative sampling: Neд(ei) is a fixed-size set
of entities which have the same entity type as ei except ei itself; 2)
hard negative sampling: Neд(ei) is a fixed-size set of entities which
satisfy some of the entity-relation pairs in N (ei) but not all of them.

3.2.4 Full Model Training. The loss function for the whole model
training is the combination of these two training phases:

L = LKG + LQA (13)

While Hamilton et al. [5] trains the model only using logical
query-answer pair training phase and Equation 12 as the loss func-
tion. We generalize their approach by adding the KG training phase
to better incorporate the KG structure into the training.

4 EXPERIMENT
We carried out empirical study following the experiment protocol
of Hamilton et al. [5]. To properly test all models’ ability to reason
with larger knowledge graph of many relations, we constructed
two datasets from publicly available DBpedia andWikidata.

4.1 Datasets
Hamilton et al. [5] conducted logic query answering evaluationwith
Biological interaction and Reddits videogame datasets3. However,
the reddit dataset is not made publicly available. The Bio interac-
tion dataset has some issue of their logic query generation process4.
Therefore, we regenerate the train/valid/test queries from the Bio
KG. Furthermore, the Bio interaction dataset has only 46 relation
types which is very simple compared to many widely used knowl-
edge graphs such as DBpedia andWikidata. Therefore we construct
two more datasets (DB18and WikiGeo19) with larger graphs and
more relations based on DBpedia andWikidata 5.

Both datasets are constructed in a similar manner as [5]:
(1) First collect a set of seed entities;
(2) Use these seed entities to get their 1-degree and 2-degree

object property triples;
(3) Delete the entities and their associated triples with node

degree less than a threshold η;
(4) Split the triple set into training, validation, and testing set

and make sure that every entity and relation in the valida-
tion and testing dataset will appear in training dataset. The
training/validation/testing split ratio is 90%/1%/9%;

(5) Sample the training queries from the training KG6.

3https://github.com/williamleif/graphqembed
4Hamilton et al. [5] sample the training queries from the whole KG rather than the
training KG, which makes all the triples in the KG known to the model and makes the
tasks simpler than realistic test situations.
5The code and both datasets are available at https://github.com/gengchenmai/
Attention_GraphQA.
6We modify the query generation code provided by Hamilton et al. [5]

https://github.com/williamleif/graphqembed
https://github.com/gengchenmai/Attention_GraphQA
https://github.com/gengchenmai/Attention_GraphQA

Table 1: Statistics for Bio, DB18 andWikiGeo19 (Section 4.1). “NUM/QT” indicates the number of QA pairs per query type.

Bio DB18 WikiGeo19
Training Validation Testing Training Validation Testing Training Validation Testing

of Triples 3,258,473 20,114 181,028 122,243 1,358 12,224 170,409 1,893 17,041
of Entities 162,622 - - 21,953 - - 18,782 - -
of Relations 46 - - 175 - - 192 - -
of Sampled 2-edge QA Pairs 1M 1k/QT 10k/QT 1M 1k/QT 10k/QT 1M 1k/QT 10k/QT
of Sampled 3-edge QA Pairs 1M 1k/QT 10k/QT 1M 1k/QT 10k/QT 1M 1k/QT 10k/QT

For DB18 the seed entities are all geographic entities directly
linked to dbr:California via dbo:isPartOfwith type (rdf:type)
dbo:City. There are 462 seed entities in total. In Step 2, we filter
out triples with no dbo: prefixed properties. The threshold η is set
up to be 10. ForWikiGeo19 the seed entities are the largest cities
in each state of the United States7. The threshold η is 20 which is a
relatively small value compare to η=100 for the widely used FB15K
andWN18 dataset. Statistic for these 3 datasets are shown in Table 1.
Given that the widely used KG completion dataset FB15K andWN18
have 15K and 41K triples, DB18 and WikiGeo19 are rather large
in size (120K and 170K triples). Note that for each triple r (s,o) in
training/validation/testing dataset, we also add its inverse relation
r−1 (o, s) to the corresponding dataset and the geometric projection
operator will learn two separated projection matrices Rr Rr−1 for each
relation. The training triples constitute the training KG. Note that
both GQE and CGA require to know the unique type for each entity.
However, entities in DBpedia and Wikidata have multiple types
(rdf:type). As for DB18, we utilize the level-1 classes in DBpedia
ontology and classify each entity to these level-1 classes based
on the rdfs:subClassOf relationships. For WikiGeo19, we simply
annotate each entity with class Entity.

4.2 Training Details
As we discussed in Section 3.2, we train our CGA model based on
two training phases. In the original KG training phase, we adopt
an minibatch training strategy. In order to speed up the model
training process, we sample the neighborhood for each entity with
different neighborhood sample size (n = 4, 5, 6, 7) in the training KG
beforehand. We split these sampled node-neighborhood pairs by
their neighborhood sample size n in order to do minibatch training.

As for the logical query-answer pair training phase, we adopt
the same query-answer pair sampling strategy as Hamilton et al.
[5]. We consider 7 different conjunctive graph query structures
shown in Figure 3c. As for the 4 query structures with intersection
pattern, we apply hard negative sampling (see Section 3.2.3) and
indicate them as 4 separate query types. In total, we have 11 query
types. All training (validation/testing) triples are utilized as 1-edge
conjunctive graph queries for model training (evaluation). As for
2-edge and 3-edge queries, the number for sampled queries for
training/validation/testing are shown in Table 1. Note that all train-
ing queries are sampled from the training KG. All validation and
testing queries are sampled from the whole KG and we make sure
these queries cannot be directly answered based on the training
KG (unanswerable queries [13]). To ensure these queries are truly

7https://www.infoplease.com/us/states/state-capitals-and-largest-cities

unanswerable, the matched triple patterns of these queries should
contain at least one triple in the testing/validation triple set.

4.3 Baselines
We use 6 different models as baselines: twomodels with the billinear
projection operator e′i = P (ei , r) and the element-wise mean or
min as the simple intersection operator:Billinear[mean_simple],
Billinear[min_simple]; two models with the TransE based pro-
jection operator and the GQE version of geometric intersection op-
erator: TransE[mean], TransE[min]; and two GQE models [5]:
GQE[mean], GQE[min]. Since Ψ() can be element-wise mean or
min, we differentiate them using [mean] and [min]. Note that all
of these 6 baseline models only use the logical query-answer pair
training phase (see Section 3.2.2) to train the model. As for model
with billinear projection operator, based on multiple experiments,
we find that the model with element-wise min consistently outper-
forms the model with element-wise mean. Hence for our model,
we use element-wise min for Ψ().

4.4 Results
We first test the effect of the origin KG training on the model per-
formance without the attention mechanism called GQE+KG[min]
here. Then we test the models with different numbers of atten-
tion heads with the added original KG training phase which are
indicated as CGA+KG+x[min], where x represents the number of
attention heads (can be 1, 4, 8).

Table 2 shows the evaluation results of the baseline models as
well as different variations of our models on the test queries. We
use the ROC AUC score and average percentile rank (APR) as two
evaluationmetrics. All evaluation results aremacro-averaged across
queries with different DAG structures (Figure 3c).

(1) All 3 variations of CGA consistently outperform baseline
models with fair margins which indicates the effectiveness
of contextual attention. The advantage is more obvious in
query types with hard negative queries.

(2) Comparing GQE+KG[min] with other baseline models we
can see that adding the original KG training phase in the
model training process improves the model performance.
This shows that the structure information of the original
KG is very critical for knowledge graph embedding model
training even if the task is not link prediction.

(3) Adding the attention mechanism further improves the model
performance. This indicates the importance of considering
the unequal contribution of the neighboring nodes to the
center node embedding prediction.

https://www.infoplease.com/us/states/state-capitals-and-largest-cities

Table 2: Macro-average AUC and APR over test queries with different DAG structures are used to evaluate the performance.
All and H-Neg. denote macro-averaged across all query types and query types with hard negative sampling (see Section 3.2.3).

Dataset Bio DB18 WikiGeo19
Metric AUC APR AUC APR AUC APR

All H-Neg All H-Neg All H-Neg All H-Neg All H-Neg All H-Neg
Billinear[mean_simple] 81.65 67.26 82.39 70.07 82.85 64.44 85.57 71.72 81.82 60.64 82.35 64.22
Billinear[min_simple] 82.52 69.06 83.65 72.7 82.96 64.66 86.22 73.19 82.08 61.25 82.84 64.99

TransE[mean] 80.64 73.75 81.37 76.09 82.76 65.74 85.45 72.11 80.56 65.21 81.98 68.12
TransE[min] 80.26 72.71 80.97 75.03 81.77 63.95 84.42 70.06 80.22 64.57 81.51 67.14
GQE[mean] 83.4 71.76 83.82 73.41 83.38 65.82 85.63 71.77 83.1 63.51 83.81 66.98
GQE[min] 83.12 70.88 83.59 73.38 83.47 66.25 86.09 73.19 83.26 63.8 84.3 67.95

GQE+KG[min] 83.69 72.23 84.07 74.3 84.23 68.06 86.32 73.49 83.66 64.48 84.73 68.51
CGA+KG+1[min] 84.57 74.87 85.18 77.11 84.31 67.72 87.06 74.94 83.91 64.83 85.03 69
CGA+KG+4[min] 85.13 76.12 85.46 77.8 84.46 67.88 87.05 74.66 83.96 64.96 85.36 69.64
CGA+KG+8[min] 85.04 76.05 85.5 77.76 84.67 68.56 87.29 75.23 84.15 65.23 85.69 70.28
Relative ∆ over GQE 2.31 7.29 2.28 5.97 1.44 3.49 1.39 2.79 1.07 2.24 1.65 3.43

(4) Multi-head attention models outperforms single-head mod-
els which is consistent with the result from GAT [20].

(5) Theoretically, IGQE () has 2Ld2 = Ld (2d) learnable param-
eters while ICGA () has Ld2 + 2KLd + Ld = Ld (d + 2K + 1)
parameters where L is the total number of entity types in
a KG. Since usually K ≪ d , our model has fewer parameters
than GQE while achieves better performance.

(6) CGA shows strong advantages over baseline models espe-
cially on query types with hard negative sampling (e.g., 7.3%
relative AUC improvement over GQE on Bio dataset8).

All models shown in Table 2 are implemented in PyTorch based
on the official code9 of Hamilton et al. [5]. The hyper-parameters
for the baseline models GQE are tuned using grid search and the
best ones are selected. Then we follow the practice of Hamilton et
al. [5] and used the same hyper-parameter settings for our CGA
models: 128 for embedding dimension d , 0.001 for learning rate, 512
for batch size. We use Adam optimizer for model optimization.

The overall delta of CGA over GQE reported in Tab. 2 is similar
in magnitude to the delta over baseline reported in Hamilton et
al. [5]. This is because CGA will significantly outperform GQE in
query types with intersection structures, e.g., the 9th query type
in Fig. 3c, but perform on par in query types which do not con-
tain intersection, e.g. the 1st query type in Fig. 3c. Macro-average
computation over all query types makes the improvement less ob-
vious. In order to compare the performance of different models on
different query structures (different query types), we show the in-
dividual AUC and APR scores on each query type in three datasets
for all models (See Figure 3a, 3b, 3c, 3d, 3e, and 3f). To highlight the
difference, we subtract the minimum score from the other scores in
each figure. We can see that our model consistently outperforms
the baseline models in almost all query types on all datasets except
for the sixth and tenth query type (see Figure 3) which correspond
to the same query structure 3-inter_chain. In both these two query
types, GQE+KG[min] has the best performance. The advantage
of our attention-based models is more obvious for query types
with hard negative sampling strategy. For example, as for the 9th

8Note that since we regenerate queries for Bio dataset, the GQE performance is lower
than the reported performance in Hamilton et al. [5] which is understandable.
9https://github.com/williamleif/graphqembed

query type (Hard-3-inter) in Fig. 3d, CGA+KG+8[min] has 5.8%
and 6.5% relative APR improvement (5.9% and 5.1% relative AUC
improvement) over GQE[min] on DB18 and WikiGeo19. Note that
this query type has the largest number of neighboring nodes (3
nodes) which shows that our attention mechanism becomes more
effective when a query type contains more neighboring nodes in
an intersection structure. This indicates that the attention mech-
anism as well as the original KG training phase are effective in
discriminating the correct answer from misleading answers.
5 CONCLUSION
In this work we propose an end-to-end attention-based logical
query answering model called contextual graph attention model
(CGA) which can answer complex conjunctive graph queries based
on two geometric operators: the projection operator and the inter-
section operator. We utilized multi-head attention mechanism in
the geometric intersection operator to automatically learn different
weights for different query paths. The original knowledge graph
structure as well as the sampled query-answer pairs are used jointly
for model training. We utilized three datasets (Bio, DB18, and Wiki-
Geo19) to evaluate the performance of the proposed model against
the baseline. The results show that our attention-based models
(which are trained additionally on KG structure) outperform the
baseline models (particularly on the hard negatives) despite using
less parameters. The current model is utilized in a transductive
setup. In the future, we want to explore ways to use our model in a
inductive learning setup. Additionally, conjunctive graph queries
are a subset of SPARQL queries which do not allow disjunction,
negation, nor filters. They also require the predicates in all query
patterns to be known. In the future, we plan to investigate models
that can relax these restrictions.

REFERENCES
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450 (2016).
[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine

translation by jointly learning to align and translate. In ICLR 2015.
[3] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic

parsing on freebase from question-answer pairs. In EMNLP. 1533–1544.
[4] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In Advances in neural information processing systems. 2787–2795.

https://github.com/williamleif/graphqembed

(a) AUC for Bio (b) APR for Bio

(c) AUC for DB18 (d) APR for DB18

(e) AUC for WikiGeo19 (f) APR for WikiGeo19

Figure 3: Individual AUC andAPR scores for differentmodels per query type. Red boxes denote query typeswith hard negative
sampling strategy
[5] Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec.

2018. Embedding logical queries on knowledge graphs. In Advances in Neural
Information Processing Systems. 2030–2041.

[6] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning
on graphs: Methods and applications. arXiv preprint arXiv:1709.05584 (2017).

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[8] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Knowledge
graph embedding via dynamic mapping matrix. In ACL, Vol. 1. 687–696.

[9] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR 2017.

[10] Chen Liang, Jonathan Berant, Quoc Le, Kenneth D Forbus, and Ni Lao. 2017.
Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak
Supervision. In ACL, Vol. 1. 23–33.

[11] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
Entity and Relation Embeddings for Knowledge Graph Completion.. In AAAI,
Vol. 15. 2181–2187.

[12] Gengchen Mai, Krzysztof Janowicz, and Bo Yan. 2018. Support and Centrality:
Learning Weights for Knowledge Graph Embedding Models. In EKAW. Springer,
212–227.

[13] Gengchen Mai, Bo Yan, Krzysztof Janowicz, and Rui Zhu. 2019. Relaxing Unan-
swerable Geographic Questions Using A Spatially Explicit Knowledge Graph
Embedding Model. In Proceedings of 22nd AGILE International Conference on
Geographic Information Science.

[14] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2016.
A review of relational machine learning for knowledge graphs. Proc. IEEE 104, 1
(2016), 11–33.

[15] Maximilian Nickel, Lorenzo Rosasco, Tomaso A Poggio, et al. 2016. Holographic
Embeddings of Knowledge Graphs.. In AAAI. 1955–1961.

[16] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2012. Factorizing yago:
scalable machine learning for linked data. In WWW. ACM, 271–280.

[17] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European Semantic Web Conference. Springer, 593–607.

[18] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. 2013. Rea-
soning with neural tensor networks for knowledge base completion. In Advances
in neural information processing systems. 926–934.

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems. 5998–6008.

[20] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR 2018.

[21] Meng Wang, Ruijie Wang, Jun Liu, Yihe Chen, Lei Zhang, and Guilin Qi. 2018.
Towards Empty Answers in SPARQL: Approximating Querying with RDF Em-
bedding. In International Semantic Web Conference. Springer, 513–529.

[22] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph
embedding: A survey of approaches and applications. IEEE Transactions on
Knowledge and Data Engineering 29, 12 (2017), 2724–2743.

[23] Jiacheng Xu, Kan Chen, Xipeng Qiu, and Xuanjing Huang. 2016. Knowledge
graph representation with jointly structural and textual encoding. arXiv preprint
arXiv:1611.08661 (2016).

[24] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015. Em-
bedding entities and relations for learning and inference in knowledge bases. In
ICLR.

[25] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R
Salakhutdinov, and Alexander J Smola. 2017. Deep sets. In Advances in neural
information processing systems. 3391–3401.

	Abstract
	1 Introduction
	2 Basic Concepts
	2.1 Conjunctive Graph Queries (CGQ)
	2.2 Geometric Operators in Embedding Space
	2.3 Entity Embedding Initialization

	3 Method
	3.1 Attention-based Geometric Projection Operator
	3.2 Model Training

	4 Experiment
	4.1 Datasets
	4.2 Training Details
	4.3 Baselines
	4.4 Results

	5 Conclusion
	References

