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Abstract

Waldo Tobler frequently reminded us that the law named after him was nothing more than
calling for exceptions. This paper discusses one of these exceptions. Spatial relation between
points are frequently modeled as vectors in which both distance and direction are of equal
prominence. However, in Toblers First Law of Geography (TFL), such a relation is described
only from the perspective of distance by relating the decreasing similarity of observations in
some attribute space to their increasing distance in geographic space. Although anisotropic ver-
sions of many geographic analysis techniques, such as directional semivariograms, anisotropy
clustering, and anisotropic point pattern analysis, have been developed over the years, direc-
tion remains on the level of an afterthought. We argue that compared to distance, directional
information is still under-explored and anisotropic techniques are substantially less frequently
applied in everyday GIS analysis. Commonly, when classical spatial autocorrelation indica-
tors, such as Morans I, are used to understand a spatial pattern, the weight matrix is only built
from distance without direction being considered. Similarly, GIS operations, such as buffering,
do not take direction into account either, with distance on all directions being equally treated.
While in reality, particularly in urban structures and when processes are driven by the under-
lying physical geography, direction plays an essential role. In this paper we ask the question
of whether the development of early GIS, data (sample) sparsity, and Tobler’s law lead to a
theory-induced blindness for the role of direction. If so, is it possible to envision direction
becoming a first-class citizen of equal importance to distance instead of being an afterthought
only considered when the deviation from a perfect circle becomes too obvious to be ignored.
Keywords: Direction, Anisotropic Modeling, Tobler’s First Law of Geography, Isotropicity,
Spatial Dependence

1 Introduction
Thanks to the wide use and complex nature of spatial phenomena, detecting, quantifying and mod-
eling spatial patterns have been the fundamental interests for not only geographers, but also re-
searchers from other disciplines such as environmental science, ecology, geology, criminologist,
astronomy, material science, and economics. As a guiding principle, Tobler’s First Law of Geogra-
phy (TFL) (Tobler, 1970) is widely accepted as the conceptual foundation of many classic spatial

1



models such as distance decay function and inverse distance weighting. Generally speaking, spa-
tial patterns are invariant under transformation, such as scale, translation, and rotation. In spatial
analysis, both scale and translation invariance have received significant attentions. For instance,
most spatial patterns are known to be scale dependent. Therefore, multiple techniques have been
introduced to study scale effects (Atkinson and Tate, 2000; Kyriakidis, 2004; Lee et al., 2018; Wolf
et al., 2018; Boeing, 2018a). Similarly, a number of spatial statistics, such as the semivariogram
and Ripley’s K, are based on assumptions of first- or second-order stationarity i.e., translation
invariance (Myers, 1989; Goovaerts, 1997; O’Sullivan and Unwin, 2014). Rotation transforma-
tion, in contrast, has been less frequently investigated both theoretically and practically in spatial
analysis.

Nonetheless, rotation (in)variance, known as isotropicity or anisotropicity, plays an equal role
in understanding spatial processes and patterns as compared to scale and translation transforma-
tions. Criminologists, for instance, have long noted the importance of anisotropicity in considering
distance decay, e.g., when predicting the home (or work) location of culprits based on the location
at which they committed the crime (Rengert et al., 1999). People do not operate in an abstract
isotropic plane but a highly anisotropic environment shaped by transportation infrastructure, ter-
rain, accessibility, and so on. Put differently, if one would rotate the activity space where a culprit
conducted crimes, the resulting pattern would look differently. The same can be said about events
such as wildfires. Consider the major Thomas Fire affecting Southern California in December
2017 as an example; see Figure 1. While relatively few people were affected by the fire as such,
hundreds of thousands were affected by the air pollution caused by the smoke. The air pollu-
tion warnings, however, were by no means evenly distributed over Southern California but varied
greatly by day due to wind direction as well as factors such as terrain and elevation, which are not
isotropic either. Communities to the west of the fire were heavily affected (during the time the pic-
ture was taken) even if they were more than 80 miles away, while communities in direct proximity
to the fire but situated to the east remained largely unaffected. One could argue that anisotropic
patterns are the rule, not the exception.

In this paper we present a series of thought experiments asking the question of whether the
development of early GIS, data (sample) sparsity, and Tobler’s law lead to a theory-induced blind-
ness (Kahneman and Egan, 2011) for the role of direction. If so, is it possible to envision direction
becoming a first-class citizen of equal importance to distance instead of being an afterthought only
considered when the deviation from a perfect circle becomes too obvious to be ignored? Do notions
such as neighborhood and decay exist in a purely directional framework? Do origin-destination
flows cluster differently when considering global instead of local reference frames for direction?
Furthermore, we will present a version of TFL based on collinearity that takes distance and direc-
tion into account and can be regarded as a generalization of the initial law.

The paper is structured as follows. Section 2 reexamines how isotropicity is approached in
common spatial analysis. In Section 3, we review research and techniques that explicitly consider
direction. A series of thought experiments about direction-based techniques are proposed and
experimented in Section 4. Finally, in Section 5 we conclude the paper and discuss directions for
future research.
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Figure 1: Smoke from the Thomas Fire, Dec 2018 (earthobservatory.nasa.gov)

2 Rethinking Assumptions of Isotropicity
In this section, we will revisit the basic assumption of isotropicity as applied to geographic space.

2.1 Types of Isotropicity
In spatial analysis, we often operate under assumptions such as distances being symmetric, point
patterns being derived from Poisson processes, and geographic fields being realizations of 2D
Gaussian processes. Interestingly, these assumptions often also imply isotropicity as an additional
assumption. Isotropicity can be defined as invariance to rotation: f(x′) = f(Rx) = f(x), where
R is the rotation matrix. It is often convenient to distinguish between two types of isotropicity:
stationary isotropicity, where isotropicity is observed locally, and radial isotropicity with a global
origin (Baddeley et al., 2015). Hence, stationary isotropicity implies translation invariance, while
radial isotropicity does not. As shown in Figure 2, the homogeneous Poisson process (left) exhibits
stationary isotropicity, while the point pattern (right) shows radial isotropicity, with tree rings being
a common example. One can think of the first case as rotations around local origins.

2.2 Spatial Isotropicity as An Oversimplification
Waldo Tobler challenged the validity of assuming isotropicity in geographic modeling in 1990s
(Tobler, 1993). He argued that with an increasing number of available geosopatial data and the
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rapid emergence of GIS, simplified assumptions about geographic space being isotropic should be
reconsidered. For instance, the concept of cost (e.g., travel time), which acknowledges geospa-
tial factors such as slope, terrain, and transportation mode, was proposed in addition to merely
using Euclidean distance. Tobler’s argument, however, was more focused on the isotropic plane
assumption, without explicitly discussing processes acting on geographic space. Hence, assuming
an underlying process in the physical world to be isotropic, will potentially yield oversimplified
isotropic patterns.

In fact, numerous physical geospatial processes and patterns, such as air pollution proliferation
(Lin et al., 2018), city dynamics (Cranshaw et al., 2012; Yan et al., 2017), and human mobility
(Song and Miller, 2014) are inherently anisotropic. For example, winds affect the proliferation
of air pollution in different directions and human movement is restricted by transportation infras-
tructure. However, researchers normally study these processes with an isotropic assumption. Lin
et al. (2018) for instance proposed a geo-context based diffusion convolution recurrent neural net-
work to forecast short-term PM2.5 concentrations, in which circle bufferings are established as
spatial contexts such as houses and green land. A similar isotropic buffering method has been
used by Yan et al. (2017) to capture the spatial context of Points Of Interest (POIs) in order to
learn embeddings for place types. In research about city dynamics, such as the Livehoods project
(Cranshaw et al., 2012), neighborhoods were commonly constructed using isotropic approaches
(e.g., spectrual clustering). However, we barely observe isotropic neighborhoods in reality due to
the complex interaction between humans and their environment. Likewise, Song and Miller (2014)
investigated the visiting probability distribution of individuals by adopting the space-time prism,
in which individuals again were assumed to move in an isotropic geographic space.

Figure 2: Left: stationary isotropicity. Right: radial isotropicity

The same argument can be made about GIS operations and algorithms which are also operated
under the assumption of isotropicity. For example, Figure 3 shows a spatial point pattern of crimes
conducted in Austin, Texas, USA in 2016. Despite the observation that the resulting point patterns
are anisotropic, there is no option in ArcMap to construct anisotropic buffers around these crime
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scenes, e.g., to estimate the location of an offender. Other similar cases include average nearest
neighbor, inverse distance weighting, clustering, and hot spot analysis, and such a limitation is
frequently observed in other popular GIS softwares/services as well such as Quantum GIS and
GRASS. Nevertheless, it is worth noting that for some of these operations, anisotropic options are
theoretically available but have not yet been implemented. For instance, there is recent interest in
anisotropic clustering and point pattern analysis (Mai et al., 2018; Rajala et al., 2018).

Figure 3: Buffer tool in ArcMap with the crime pattern at Austin (2016). Pink circular buffer is
generated from the tool, and the green elliptical buffer is the ideal one.

With respect to studying spatial patterns, the majority of spatial indicators are based on distance
only, e.g., Moran’s I and LISA (Moran, 1950; Geary, 1954; Getis, 1991; Getis and Ord, 1992;
Anselin, 1995; Sawada, 2001). Indicators that relate angular effect to spatial dependence are rare.

In summary, given the complexity of geographic space, spatial processes and patterns, the
assumption of isotropicity in spatial analysis, albeit often useful, is an oversimplification. GIS tools
are primarily implemented following the isotropic assumption, sometimes offering adjustments for
anisotropicity as options.

2.3 Reasons to Assume Isotropicity
Compared to distance, direction is more challenging to model and computationally more demand-
ing. Distance is a relation between two locations, while direction requires at least three (e.g., two
targets plus the origin to form an angle) thereby requiring a larger sample size. Specifically, when
the sample size is small, it is difficult to have enough replicates for statistical analysis on direc-
tional information, thus the assumption of isotropicity is often made for spatial analysis (Rajala
et al., 2018). One can regard directional analysis as higher ordered. Put differently, the ability
to analyze more complex patterns increases the computational demands (Kaito et al., 2015; Zhu
et al., 2017). Moreover direction is measured on a cyclical ratio scale (Chrisman, 1998). Similarly,
the notion of a direction based (or even just anisotropic) neighborhood is less intuitive. Finally,
directional dependency varies greatly by (geographic) scale. For instance, directional informa-
tion may play a role only at large scales, such as the patterns of plants (Illian et al., 2008) while
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in other cases directional dependency is significant only at small scales such as individual-level
crime patterns (Rengert et al., 1999). Many of these arguments and potential reasons have become
less relevant given progress in (parallel) algorithm design, big data, inexpensive instrumentation,
a data sharing culture, and so forth, and this has likely contributed to the growth of anisotropic
techniques over the past 10 years. Last but not least, from a conceptual perspective, the lack of
a directional component in TFL may have led to a theory-induced blindness, where we focus on
distance first and only consider direction as an afterthought. However, it is possible to consider
direction within TFL. For instance, if the parameterization of distance decay varies as a function
of direction, isotropicity is defined as the case where this variation is negligible.

Therefore the concepts of (an)isotropicity and directional dependence should be at the same
level as stationarity / homogeneity and spatial dependence in spatial analysis.

3 Where Direction Has Been Considered
Noticing the importance of direction in spatial analysis, a number of researchers have developed
anisotropic/direction-based techniques to address various problems. Bennett et al. (1985) cate-
gorized spatial analysis into two models: spatial interaction and spatial structure. Direction is
explicitly encoded in the former case, such as flows and trajectories but not in the latter case with
spatial point patterns and geographic fields as examples. Even though directional information
could facilitate the modeling of both spatial interactions and structures, it is worth noting that most
existing techniques still rely on distance-based approaches and assume isotropicity. This section
reviews work that employs directional information on either of these two categories. In addition,
direction has also been investigated by various subfields of geography, such as spatial reasoning
and GIS operations (see Section 3.3). Our goal is to provide an overview of how direction has been
approached in the literature.

3.1 Directions in Spatial Interactions
Spatial interaction is defined as flows between geographic entities (Haynes et al., 1984; Wilson,
1971; Tobler, 1975; Roy and Thill, 2004). Examples of these flows include students traveling
from one state to another, the demand/supply between two markets, birds migration, and so on.
Although direction is implicitly encoded in these data, only a few studies have taken direction into
account explicitly when modeling flows. The asymmetry of spatial interactions inspired Tobler
(1975) to investigate an algebraic approach to quantifying and subsequently visualizing the vector
field of flows, in which the role of direction has been emphasized. However, the paper does not
discuss how directional information could be modeled to assist the understanding of flow patterns.

Another example of spatial interaction are movement studies. Murray et al. (2012) explored the
pattern of movements in space and time using circular statistics, in which the bi-variate movement
vectors (i.e., distance and direction) were partitioned into different distance-direction regions of
a circle. They proposed a goodness-of-fit testing to statistically check the deviation of observed
pattern to the expected one. Applying the approach to residential housing movement data, Murray
et al. (2012) discovered both distance decay effects and the anisotropicity. In lieu of evaluating
the general distance-direction pattern of movements, Liu et al. (2015) proposed spatial autocorre-
lation indicators to test the association of flow vectors globally and locally, by extending Moran’s
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I (Moran, 1950) and LISA (Anselin, 1995), respectively from the scalar version to a vector one.
To use Moran’s I as an example, both the magnitude and direction of movement flows were con-
sidered by replacing the product of scalar deviation between two locations to the mean with a dot
product of the vector deviation of two flows to the mean. Nonetheless, the spatial weight matrix
for flow was solely defined by a distance-based neighborhood using the origin or destination.

Motivated by clustering spatial flows, multiple approaches were introduced to calculate the
similarity between flow vectors (Zhu and Guo, 2014; Tao and Thill, 2016; Gao et al., 2018; Yao
et al., 2018). Notwithstanding, barely any of them have direction being explicitly considered,
which could cause misinterpretation of the pattern (see detailed discussions in Section 4.1). Tao
and Thill (2016) proposed a similarity measure as a combination of flow length and spatial prox-
imity. Even though direction was not explicitly employed in their model, they discussed how
direction was implicitly inferred by the distance between origin-origin and destination-destination
pairs. Another current work that incorporated direction was presented by Yao et al. (2018), in
which directional information were converted to distances between the two destinations with their
origins being translated to be the same.

3.2 Directions in Spatial Structures
In contrast to spatial flows, direction is not explicitly defined in many other types of spatial data. In
this section, we review techniques that explore the role of anisotropicity in geographic fields and
spatial point patterns.

Focusing on geostatistical data, Isaaks and Srivastava (1989) and Goovaerts (1997) catego-
rized anisotropic models into geometric anisotropy, in which only the range of the semivariagram
changes with direction but not the shape and sill, and zonal anisotropy, in which both range and
sill depend on direction. Numerous techniques were introduced to deal with these two cases, all of
which were based on rotational and scaling transformations such that distance was converted from
an anisotropic space to an isotropic one. To generalize anisotropic modeling, Eriksson and Siska
(2000) investigated the ellipses in an attempt to consistently model the directional varying param-
eters such as sill, range, nugget, and power in an universal framework. In addition to modeling
anisotropicity globally in the sense of fitting the semivariogram, there is an increasing number of
work aiming to model locally varying spatial anistropy as well (Te Stroet and Snepvangers, 2005;
Boisvert and Deutsch, 2011; Bongajum et al., 2013), by which more complicated spatial patterns
could be revealed such as channels and veins from geological deposits.

To analyze spatial point patterns, researchers categorize the mechanisms of anisotropic patterns
into geometric anisotropy, where points are converted from a stationary and isotropic pattern by a
rotational transformation, and oriented clusters, where the intensity of points increases along a di-
rection (Lawson et al., 2007; Illian et al., 2008; Rajala et al., 2018). Anisotropic approaches, such
as Fry plots (Fry, 1979), nearest neighbor orientation density (Illian et al., 2008), angle depen-
dent K function (Ohser and Stoyan, 1981), spectral (Bartlett, 1964) and wavelet (Rosenberg, 2004)
analysis were developed to achieve a broad range of analysis, including the detection of anisotrop-
icity, testing for isotropicity, and estimation of the direction of point patterns. However, it is worth
noting that despite direction being considered, distance dominates in most of these techniques with
direction being regarded as one type of point marks similar to other associated attributes.
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3.3 Further Uses of Direction
Beyond quantifying directional information to improve the understanding of spatial patterns, direc-
tion also plays a role in fields such as spatial reasoning, GIS operations, geospatial semantics and
spatial networks. For example, Frank (1992) proposed a qualitative approach to conduct spatial
reasoning based on both cardinal direction and qualitative distance. In contrast to quantitatively
measuring the role of direction in classic spatial analysis, this work explored qualitative reasoning
of space using directions. Furthermore, there are endeavors to extend normal spatial buffering to
its anisotropic version. One example is Mu (2008), which introduced an anisotropic buffering pro-
cess by allowing the distance to be relative along different directions, with the goal of making sure
the buffering process along all directions simultaneously reaches the boundary of Voronoi poly-
gons built from a geometry set. For instance, if a geometry’s Voronoi polygon had a shape that is
elongated along west-east direction, then the generated buffer for this geometry would have greater
length along west-east direction. Spatial clustering is another type of classic GIS operations. By
replacing the circular searching window by an ellipse, Mai et al. (2018) proposed an anisotropic
version of the DBSCAN algorithm, which is able to detect clusters of points that have an arbitrary
geometry, such as points of interest along a street. With respect to geospatial semantics, Zhu et al.
(2016) proposed spatial signatures that incorporated direction-based statistical analysis, such as
standard deviational ellipse, to understand the semantics of geographic feature types. Studies of
spatial networks have to leverage the embedded direction of edges in order to characterize patterns
(Gastner and Newman, 2006; Barthélemy, 2011; Barthelemy, 2018). To incorporate the topology
and structure of spatial networks, Ermagun and Levinson (2018a,b) introduced a network weight
matrix in which the edge direction is explicitly considered. A classic application of spatial net-
works are the road networks; Boeing (2018b) explored the distribution of road directions of road
networks in urban cities and discovered that directional patterns of roads varied among different
cities, which can be applied as one factor to characterize urban configurations. In cellular automa-
ton based spatial simulation, directional information has also been rarely incorporated. A notable
exception is Clarke’s wok on the growth of urban areas by introducing slope resistance and road
gravity factors (Clarke et al., 1997).

4 Thought Experiments
As discussed in Section 2, direction could be studied in two scenarios: stationary isotropicity (or
local direction), where rotational origins are constructed for each local study location or region,
and radial isotropicity (or global direction), where only one global origin is defined and all study
locations or regions share it, e.g., Grid North. Accordingly, there are two alternatives to include
direction in spatial analysis. First of all, directional information can be studied globally, in which
the primary tasks are to detect, test, and estimate the directional trend of a pattern in a global sense.
Secondly, direction of, for example, vectors, points, or cells can be defined locally, and then their
aggregated patterns and/or associations are investigated. In Section 3, we discussed techniques
that were developed in various fields that consider direction when characterizing spatial patterns
either globally or locally. In this section, we will demonstrate the impact of different approaches
to incorporating direction by a series of thought experiments. Our goal here is to provide new
perspectives on modeling spatial information emphasizing the role direction could play as a first-
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class citizen in spatial analysis without implying that direction-only techniques should replace
those based on distance.

4.1 Spatial Interactions
In Section 3.1, we introduced two recent approaches for measuring the similarity of flow vectors,
with directional information either explicitly or implicitly embedded. As a thought experiment,
we discuss their potential drawbacks and showcase alternative formulations that will allow users
to distinguish previously indistinguishable origin-destination flows.

First, Tao and Thill (2016) promoted a flow similarity measure (Formula 1), in which both
spatial proximity (i.e., dO and dD) and flow lengths (i.e., Li and Lj) were accounted for. Even
though direction was not a factor being directly considered, the authors argue that it was implicitly
incorporated in spatial proximity, which is computed as weighted sum of origin-origin (dO) and
destination-destination (dD) distances. The underlying rational is that when spatial proximity was
fixed, the relative direction of the two flows would then be constrained to such a small degree
of freedom that including direction would be unnecessary. In the following, we will show that
such an implicit model does not capture all cases of directional dependence. Namely, there are
flow patterns which are relevant but are challenging to distinguish. For example, the three cases
illustrated in Figure 4 yield the same results under Formula 1. Specifically, comparing flow pairs
(A1, B1) with (A2, B2), the only difference is the direction of the two flows, with A1 and B1 being
parallel and A2 and B2 crossing each other. Hence, since disA1B1 = disA2B2 , both flow pairs
are equal. Note, however, that two people traveling along routes represented by these flows may
have met in the second but not the first case. Likewise, the flow pair (A3, B3) has different origin-
origin (dO) and destination-destination (dD) distances compared to (A1, B1). Since Formula 1
considers spatial proximity as weighted sum of the two distances, with the weights suggested to be
equal in general (i.e., α = β), the two pairs would be equal again. However, one can observe an
important distinction between pairs (A1, B1) and (A3, B3): the local directional angle of the two
flows (A3, B3) causing them to diverge.

disij =

√
αd2O + βd2D

LiLj
(1)

Figure 4: Examples of flow vectors. A and B have the same length (i.e., Li = Lj).

In contrast, Yao et al. (2018) explicitly incorporated direction to characterize flows. However,
they only consider a local perspective. Put differently, these approaches assume stationary isotrop-
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icity, where directions are measured from origins that are defined locally for individual locations
or regions such as transportation zones. In radial isotropicity a global origin is defined and all
directions are constructed relative to it. Next we will approach flow patterns from such a global
perspective. As Figure 5 (top) shows, despite the fact that flows C, E and F are distinct in terms
of vector length, spatial proximity and their local directional angle, they all orient close to the
True North. In contrast, flow D is more similar to C in respect to all the three aforementioned
factors; however its different global orientation makes it dissimilar from the rest. However, if only
local direction would be employed (Figure 5, bottom), in which all the four flows were translated
to the same locally defined origin O first, D would end up to be more similar to C compared to
E and F due to the relation of θCD < θCE < θCF . To address this issue, we introduce a new
indicator shown as Formula 2 here, in which both global direction (cos(θ)) and flow length (L) are
taken into account to quantify the dissimilarity between two flows i and j. As the top of Figure
5 illustrated, since flow C, E, and F all share the same projected length along the True North
(i.e., hi = Licos(θi) = h 6= 0, i = C,E, F ), their pairwise dissimilarities would be 0; while flow
D tends to be unique as hD = 0 6= h. This pattern is not uncommon in reality. For example,
when studying the spatial patterns of immigrant flows in the northern hemisphere, it is noticeable
that a majority of flows are from south to north (e.g., Mexico to U.S., Maghreb to northern Eu-
rope), with only few exceptions (e.g., Malaysia to Singapore). Hence, researchers interested in the
mechanisms driving immigration would consider these SN flows to be similar despite the distance
of their origins and destinations being thousands of kilometers apart. Put differently, the global
flow direction plays a more prominent role in distinguishing and classifying immigrant flows as
compared to other factors, such as spatial proximity.

disij = |Li cos(θi)− Lj cos(θj)| (2)

4.2 Spatial Structures
Stationary isotropicity receives more attentions than radial isotropicity in spatial interaction mod-
eling. Conversely, models developed to analyze spatial structures employ radial isotropicity over
stationary isotropicity. For example, geometric anisotropy modeling, for either spatial point pat-
terns or geographic fields, is inspired by transforming ellipses to circles (see Section 3.2). An
ellipse is established globally with only one set of origin, major, and minor axes being determined.
For instance, the popular modeling of directional semivariograms (Goovaerts, 1997) is a process
of fitting parameters (e.g., range and sill) of the covariance functions differently along selected
directions (e.g., cardinal directions). These are defined relative to one global origin and reference
system. However, it is also feasible to model semivariograms in the context of stationary isotrop-
icity. What information could a directional semivariogram convey, when the direction for each
location is defined based on its local origin (e.g., the location itself)? As Figure 6 illustrates, the
other two points (in spatial point patterns), or cells (in geographic fields), sj and sk have to be
selected in an attempt to construct the local angle for location si. From this perspective, there
are clear relations to Multi-Point Geostatistics (MPS) and the ideas of geo-multipoles (Zhu et al.,
2017).
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Figure 5: Examples of flow vectors. Top: global direction is considered (θC = θE = θF < θB).
Bottom: local direction is considered (θCD < θCF < θCE).

Figure 6: Examples of locally defined directional angles for si. Left: a spatial point pattern. Right:
a geographic field modeled as raster.

Figure 7 illustrates an experiment of comparing the conventional directional semivariogram
with a version in which the direction is defined as local angles of two pairs (i.e., comprised of three
locations). The selected experimental data was first introduced by Burrough and McDonnell (1986)
and has been widely used to demonstrate geostatistic methods. The top figure shows the spatial
distribution of zinc concentration of 155 sample points collected along the flood plain of the Meuse
river. The bottom left of the figure demonstrates the four directional experimental semivariograms,
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and the right shows the proposed version with local angles grouped into four classes. It should be
noted that even though the distance class (i.e., x-axis) for these two diagrams are set up to be the
same, their target statistics (i.e., y-axis) are designed to be different. Since three locations are used
to compose directional angles, there is strictly speaking no semivariance (i.e., attribute variance of
two locations). Instead, we use formula (3) to make our point.

γ(si|sj, sk) = 1− (z(si)− z(sj))2

(z(si)− z(sk))2

where z(·) is the associated attribute value at a location, and z(si)− z(sj) < z(si)− z(sk)
(3)

This statistic could be interpreted in analogy to the eccentricity (squared version) of an ellipse,
where the origin is at si, the length of the minor axis (i.e., z(si)− z(sj)) is defined as the relatively
smaller attribute difference of the two pairs (si, sj) and (si, sk), and the major axis is the larger one
(i.e., z(si)−z(sk)). Analogue to geometric anisotropy, this statistic (pair variance) quantifies how
varied two pairs are in terms of their attribute values.

At least three observations can be made considering such local directional perspective, First,
similar to the directional semivariogram, its local version, embraces comparatively different trends
towards various local angle groups. Secondly, except for the angle group of 90 to 135 degree,
the pair variance (i.e., γ) appears to be independent of distance. However, it can be seen that
the mean pair variances across different distance classes vary among the three diagrams, with the
group of the largest angle range, 135 to 180 degree, having the largest mean variance, 45 to 90
degree the intermediate, and 0 to 45 the smallest. Simply put, the pair variance, or equally the
local anisotropicity, increases with increased angles for these three angle groups. This observation
in fact correlates with the general distance effect introduced by TFL, due to the relation between
angles and distance (i.e., edge length) in a triangle. The most intriguing observation, however,
comes from the angle group of 90 to 135 degree, in which the pair variance is dependent on
distance. Specifically, the pair variance starts to increase with distance until around 500 meters,
from which the trend begins to decline. This observation reveals the complex shape of the study
region (i.e., a big curve at the bottom) and the distribution of those marked points (i.e., along the
river).

4.3 Distance-free Approaches
So far we have examined different means by which both global and local notions of direction can
facilitate our understanding of spatial patterns. One common feature of these approaches is that
they remain dependent on distances primarily, with direction being included additionally (as in
the case above where increased angles increase the edge length). Since we argue that the role of
direction should be raised to the same level as distance, this section attempts to imagine a thought
experiment where distance is not considered at all.

4.3.1 Angular Variogram

Although both the directional semivariogram and its local version have considered direction, dis-
tance keeps playing a dominant role in the modeling, which could be reflected by the fact that
extracted relations from these diagrams are between the target statistics (e.g., semivariance or pair
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Figure 7: Comparison between the classical directional semivariogram and local directions.

variance) and distances. The dependence between these statistics and direction has not been di-
rectly revealed yet, which, however, could potentially be leveraged to analyze spatial patterns.
Consequently, this section envisions a distance-free variogram, where the relation between pair
variance (see Formula 3) and local directional angles are plotted. Ideally, for a pattern with n loca-
tions, there should be

(
n
3

)
combinations of triangles, and since each triangle has three inner angles,

there are in total
(
n
3

)
× 3 combinations of pairs. Due to the exponential nature of this combination

(e.g., a 100 × 100 DEM results in about 499 billion possible combinations), we apply a sample
strategy. Specifically, for each location (e.g., cell), we randomly generate one sample pairs for
each angle class, and at the end discard those locations that have no pairs for any of the angle class,
which is mainly due to the edge effect.

Figure 8 illustrates the envisioned angular variogram using three patterns with different degrees
of randomnesses. The pattern on the left is a DEM from the area of Lake Tahoe, CA, which
shows a valley along the north-east direction. As the diagram indicates, with increasing angles,
the pairs’ variance increases until hitting the sill at about 0.73 around the range of 90 degree. This
observation is partially due to the curvilinearity of the valley. To further illustrate this, we gradually
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weaken the observed pattern by introducing randomness to it. As Figure 8 shows, when 20%
randomness is introduced, the generated angular diagram shows a discrepancy from the original
one, with no significant sill being observed. Once the randomness reaches 50%, the trend turns
to be unstable showing less correlation between angle and pair variance.cThis comparison affirms
the feasibility of angular variogram, and consequently the role of direction in describing spatial
patterns. Specifically, the relation between angle and pair variance becomes less significant when
greater randomness is introduced.

Furthermore, analogue to distance effect, trends revealed from the angular isotrogram with no
randomness (i.e., the Original Pattern) could be interpreted as a direction effect, which illuminates
the general principle of geospatial phenomena: the angle between two pairs has influence over
their similarity; and they would be similar if their angle is smaller. However, it is worth noting that
the similar trends observed in angular variogram (direction effect) and semivariogram (distance
effect) is not a coincidence. In fact, the three angles and three edge lengths (i.e., distances) in a
triangle are correlated, with knowing any three of these six elements would already determine the
shape of a triangle. Nonetheless, the value of proposed angular variogram should not be neglected,
since it has the ability to model high-ordered interactions through a shape that is composed of
at least three locations. In contrast, conventional distance-based approaches only concentrate on
the relation between two locations, i.e., one pair. With this point in mind, we argue that more
sophisticated statistics and visualizations should be proposed to extract and interpret the high-
order spatial information modeled by incorporating directions, which is beyond the scope of this
work. Moreover, we choose to explore local direction in this experiment, leaving the global version
as another promising research direction.

Figure 8: Comparison of angular variogram for patterns with various randomness

4.3.2 Cosine Angular Weighting

According to TFL, closer things are more related. Therefore, one of the simplest spatial prediction
models is inverse distance weighting. Even though a circular search neighbor could be replaced by
an ellipse, the weighting schema is still based on distance. In this section, we continue our thought
experiments by looking at a purely direction-based spatial prediction, which assumes that two pairs
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having smaller angle are more related. In lieu of using inverse functions, the trigonometric function
cos() is adopted to model the angular weight. Formula 4 demonstrates using sampled N locations
{sj, j = 1...N} to predict the attribute z at unsampled location si, where {θj, j = 1...N} are the
angles between−→osi and−→osj assuming they have the same global origin o (i.e., radial anisotropicity).
Similar to inverse distance weighting, p is a positive power parameter controlling the influence of
direction. Due to the symmetric nature of directional influence over 90 degree, e.g., 45 degree has
the same influence with 135 degree, the angular weighting function is determined as the absolute
of cos().

zi =

∑N
j=1 | cos(θj)|pzj∑N
j=1 | cos(θj)|p

(4)

To validate the feasibility of cosine angular weighting (CAW), Figure 9 illustrates a synthesized
sample data, where the attribute value at red dot s0 is a target to be predicted, and its neighbors
are selected as s1, s2, s3 and s4. One noticeable characteristic of this data is that s0, s1 and s2
lie on the same direction wrt. the reference system and we assume they share a common value 2;
this is analogous to the Thomas fire smoke example. However, since −→os3 and −→os4 have directional
distortion in regard to the direction of −→os0, s3 and s4 are relatively larger. Therefore, in order to
predict the value at s0, s1 and s2 would preferably play a greater role compared to s3 and s4. By
using CAW, s1 and s2 receive larger weights than s3 and s4, resulting the value at s0 as z(s0) =
cos(0)×2+cos(0)×2+cos(π/8)×7+cos(π/4)×10

cos(0)+cos(0)+cos(π/8)+cos(π/4)
= 4.83. However, if conventional inverse distance weighting

(IDW) would have been applied, the result would be: z(s0) = 1×2+(1/3)×2+1×7+(1/2)×10
1+(1/3)+1+(1/2)

= 5.17,
keeping in mind that the true value is 2. Note that we set p for both CAW and IDW to be 1, but one
would adjust it to control the decaying importance of direction or distance (thereby increasing the
difference between the two approaches).

This thought experiment shows how one could utilize direction exclusively in spatial predic-
tions using a rather simple model and a synthesized data set. Whether there would be a need for
a purely directional method is out of scope for the work at hand. Meanwhile, new spatial models
that incorporate both distance and directional angles could be more promising. Finally, CAW takes
a radial isotropicity perspective (i.e., a global perspective), while angles could also be constructed
locally with three locations (i.e., two pairs) being studied simultaneously.

4.3.3 Directional Association

As far as spatial association is concerned, distance-based statistics are utilized to quantify the inter-
action between locations (Getis and Ord, 1992). Even though direction had been used by Costanzo
et al. (1983) to illustrate spatial autocorrelation measures of directions (e.g., suspects from similar
directions would conduct crimes at places that are close), it is regarded as an attribute associated
with the location, rather than a factor that model the interaction of locations like distance. In
this section, we envision an indicator family (Formula 5) to measure spatial association from a
directional perspective, in which classic distance-based spatial interaction is replaced by direction.

J =

∑N
i=1

∑N
j=1

∑N
k=1w(θijk)γ(si|sj, sk)∑N

i=1

∑N
j=1

∑N
k=1w(θijk)

, i 6= j 6= k (5)
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Figure 9: Synthesized points for CAW predication

In Formula 5, si, sj , and sk are three locations comprising two pairs: sisj and sisk; θijk repre-
sents the angle ∠sjsisk with si as the local origin; N is the number of locations in a spatial pattern;
w represents the weight function based on the directional angle; and γ is the attribute interaction
model between two pairs. In analogy to Moran’ I , J is designed to model how the attribute relation
of pairs (i.e., γ) is associated with their directional information (i.e., w). Since three locations are
involved in J , one way to compute the attribute interaction γ is to follow Formula 3. For direction-
based weight function w, there are multiple possible approaches as well. For example, in Formula
6, and similarity to CAW we use cos(θijk).

J =

∑N
i=1

∑N
j=1

∑N
k=1 cos θijk(1−

(z(si)−z(sj))2
(z(si)−z(s′j))2

)∑N
i=1

∑N
j=1

∑N
k=1 cos(θijk)

, i 6= j 6= k (6)

The range of J depends on the range of γ. By following Formula 3 (with a range of [0, 1]),
J would also have the range of [0, 1]. Therefore, a J closer to 1 means the pattern tends to have
stronger positive directional association; namely we expect to find two pairs to be similar if their
angle is smaller. On the contrary, it indicates stronger negative directional association if J is closer
to 0, meaning that one would observe pairs that have larger angles being rather similar. Applying J
to the Meuse dataset (see Figure 7) yields 0.64 indicating a (weak) positive directional association.

Similar to distance-based associations, there are multiple alternatives for directional associa-
tion by either modifying the angular weight function w or the pair statistics γ. For example, in
analogy to contiguity-based neighborhoods, the weight function w could be modeled based on
direction-based neighborhoods such that only those locations that are 45 degree to the local origin
are regarded as its neighbors. In terms of pair statistics γ, the high-order spatial cumulant (Dimi-
trakopoulos et al., 2010) could be incorporated. However, since such an association involves more
than two locations, the interpretation would be challenging. Therefore we contemplate that more
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robust statistical methods should be studied to assist interpreting and testing directional associa-
tions.

4.4 Generalized First Law of Geography
We started by arguing that the strong focus on distance implied by the original formulation of
Tobler’s First Law, together with other technical limitations such as spatial data sparsity and lim-
itations of early GIS and hardware, may have led to a theory-induced blindness (Kahneman and
Egan, 2011) by which we tend to overlook direction initially and only consider it as an afterthought
that has to be addressed, e.g., by replacing a scan circle with an ellipse. One could now argue that
the very definitions of latitude and longitude, and, thereby, distances on the surface of the earth,
include angles already. However, that is not the point we are trying to make. Instead we provided
examples to highlight the role of conceptualizing geographic problems and processes by making
them directionally-explicit. TFL recognizes the role of distance in modeling spatial interactions
without examining whether the increasing variance with distance is influenced by direction or not.
We believe that a generalized version of Tobler’s law can include direction as a first-class citizen
without having to make up new laws or radically modifying the existing law 1. In fact, TFL can be
regarded as capturing the case where the role of direction is negligible, e.g., on an abstract plane.
In such a case, a generalized version (as a homage, not a replacement) can be derived by making
use of collinearity.

Everything is related to everything else, but near things and those that point into sim-
ilar directions are more related than distant things and those pointing in different
directions.

Note that we refrain here from distinguishing between local and global notions of direction.
Furthermore, staying in line with the vague nature of “near things”, we use “those that point into
similar directions” to retain the guiding principle characteristic of TBL and leave the exact inter-
pretation to specific measures, models, and application needs.

5 Conclusions and Future Work
Variance increases with distance, but it also does so with direction. This, of course, is well known
and forms the basis for a wide range of anisotropic techniques in spatial analysis and beyond. Inter-
estingly, however, isotropicity itself is missing from the list of fundamental concepts in GIScience.
It received little attention in GIS/GIScience textbooks, Esri’s documentation of ArcGIS, and the
current GIS body of knowledge. Put differently, anisotropicity remains an afterthought only con-
sidered when its consequences on spatial analysis can no longer be ignored. As we illustrated by
reviewing the literature, this is not for lack of related research and techniques.

Physical and societal processes do not play out in an abstract isotropic plane. Anisotropicity is
the norm, not the exception. In this work, we argued that the fact that direction is not a first-class
citizen of foundational concepts such as Tobler’s First Law may lead to theory-induced blindness

1as substantial modifications may destroy the original charm and simplicity of Tobler’s First Law.
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and believes that direction can be indirectly accounted for by using distance alone. We have high-
lighted cases, such as global migration patterns, where this is not the case. We demonstrated that
these cases would benefit from making distinctions between local reference frames for directional
dependence and global reference frames.

Interestingly many key GIS notions can be modeled with direction alone, such as the direct
neighborhood of a cell in Queen’s or Rook’s case or the ideas of weights and associations more
generally. To take this to an extreme, one can even envision purely direction-based interpolation
such as in our CAW thought experiment. In fact, we believe that Tobler’s first law as such can be
generalized in the sense that its original formulation accounts for the case where directional varia-
tion is negligible and that deviation from collinearity can be added for cases in which directional
variation is significant.

In summary, this work highlights the role of direction and directional dependence as conceptual
foundations of GIS processing and analysis. In the future we plan to further investigate similar
thought experiments and provide a concrete overview of the role (or lack of it) of anisotropicity in
spatial thinking and GIS operations.
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