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• We propose a general-purpose spherical location encoder, Sphere2Vec, which, as far as we know, is the first location
encoder which aims at preserving spherical distance.

• We provide a theoretical proof about the spherical-distance-kept nature of Sphere2Vec.
• We provide theoretical proof to show why the previous 2D location encoders and NeRF-style 3D location encoders

cannot model spherical distance correctly.
• We first construct 20 synthetic datasets based on the mixture of von Mises-Fisher (MvMF) distributions and show

that Sphere2Vec can outperform all baseline models including the state-of-the-art (SOTA) 2D location encoders and
NeRF-style 3D location encoders on all these datasets with an up to 30.8% error rate reduction.

• Next, we conduct extensive experiments on seven real-world datasets for three geo-aware image classification tasks.
Results show that Sphere2Vec outperforms all baseline models on all datasets.

• Further analysis shows that Sphere2Vec is able to produce finer-grained and compact spatial distributions, and does
significantly better than 2D and 3D Euclidean location encoders in the polar regions and areas with sparse training
samples.



Sphere2Vec: A General-Purpose Location Representation Learning
over a Spherical Surface for Large-Scale Geospatial Predictions
Gengchen Maia,d,e,f,∗,1, Yao Xuanb,1, Wenyun Zuoc, Yutong Hed, Jiaming Songd, Stefano Ermond,
Krzysztof Janowicze,f,g and Ni Laoh,2
aSpatially Explicit Artificial Intelligence Lab, Department of Geography, University of Georgia, Athens, Georgia, 30602, USA
bDepartment of Mathematics, University of California Santa Barbara, Santa Barbara, California, 93106, USA
cDepartment of Biology, Stanford University, Stanford, California, 94305, USA
dDepartment of Computer Science, Stanford University, Stanford, California, 94305, USA
eSTKO Lab, Department of Geography, University of California Santa Barbara, Santa Barbara, California, 93106, USA
fCenter for Spatial Studies, University of California Santa Barbara, Santa Barbara, California, 93106, USA
gDepartment of Geography and Regional Research, University of Vienna, Vienna, 1040, Austria
hGoogle, Mountain View, California, 94043, USA

ART ICLE INFO
Keywords:
Spherical Location Encoding
Spatially Explicit Artificial Intelligence
Map Projection Distortion
Geo-Aware Image Classification
Fine-grained Species Recognition
Remote Sensing Image Classification

ABSTRACT
Generating learning-friendly representations for points in space is a fundamental and long-standing
problem in machine learning. Recently, multi-scale encoding schemes (such as Space2Vec and NeRF)
were proposed to directly encode any point in 2D or 3D Euclidean space as a high-dimensional vector,
and has been successfully applied to various (geo)spatial prediction and generative tasks. However,
all current 2D and 3D location encoders are designed to model point distances in Euclidean space.
So when applied to large-scale real-world GPS coordinate datasets (e.g., species or satellite images
taken all over the world), which require distance metric learning on the spherical surface, both types
of models can fail due to the map projection distortion problem (2D) and the spherical-to-Euclidean
distance approximation error (3D). To solve these problems, we propose a multi-scale location en-
coder called Sphere2Vec which can preserve spherical distances when encoding point coordinates on
a spherical surface. We developed a unified view of distance-reserving encoding on spheres based
on the Double Fourier Sphere (DFS). We also provide theoretical proof that the Sphere2Vec encoding
preserves the spherical surface distance between any two points, while existing encoding schemes
such as Space2Vec and NeRF do not. Experiments on 20 synthetic datasets show that Sphere2Vec
can outperform all baseline models including the state-of-the-art (SOTA) 2D location encoder (i.e.,
Space2Vec) and 3D encoder NeRF on all these datasets with up to 30.8% error rate reduction. We
then apply Sphere2Vec to three geo-aware image classification tasks - fine-grained species recognition,
Flickr image recognition, and remote sensing image classification. Results on 7 real-world datasets
show the superiority of Sphere2Vec over multiple 2D and 3D location encoders on all three tasks.
Further analysis shows that Sphere2Vec outperforms other location encoder models, especially in the
polar regions and data-sparse areas because of its nature for spherical surface distance preservation.
Code and data of this work are available at https://gengchenmai.github.io/sphere2vec-website/.

1. Introduction
The fact that the Earth is round but not planar should sur-

prise nobody (Chrisman, 2017). However, studying geospa-
tial problems on a flat map with the plane analytical geome-
try (Boyer, 2012) is still the common practice adopted by
most of the geospatial community and well supported by
all the softwares and technology of geographic information
systems (GIS). Moreover, over the years, certain program-
mers and researchers have blurred the distinction between
a (spherical) geographic coordinate system and a (planar)
projected coordinate system (Chrisman, 2017), and directly
treated latitude-longitude pairs as 2D Cartesian coordinates
for analytical purpose. This distorted pseudo-projection re-
sults, so-called Plate Carrée, although remaining meaning-
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less, have been unconsciously used in many scientific work
across different disciplines. This blindness to the obvious
round Earth and ignorance of the distortion brought by vari-
ous map projections have led to tremendous negative effects
and major mistakes. For example, typical mistakes brought
by the Mercator projection are that it leads people to be-
lieve that Greenland is in the same size of Africa or Alaska
looms larger than Mexico (Sokol, 2021). In fact, Green-
land is no bigger than the Democratic Republic of Congo
(Morlin-Yron, 2017) and Alaska is smaller than Mexico. A
more extreme case about France was documented by Harmel
(2009) during the period of the single area payment. After
converting from the old national coordinate system (a Lam-
bert conformal conic projection) to the new coordinate sys-
tem (RGF 93), subsidies to the agriculture sector were re-
duced by 17 million euros because of the reduced scale error
in the map projection.

Subsequently, this practice of ignoring the round Earth
has been adopted by many recent geospatial artificial intel-
ligence (GeoAI) (Hu et al., 2019; Janowicz et al., 2020) re-
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Figure 1: Applying Sphere2Vec to geo-aware image classification task. Here, we use the fine-grained species recognition and
remote sensing (RS) image classification as examples. Given a species image I, it is very difficult to decide whether it is an Arctic
fox or a gray fox just based on the appearance information. However, if we know this image is taken from the Arctic area, then
we have more confidence to say this is an Arctic fox. Similarly, an overhead remote sensing image of factories and multi-unit
residential buildings might look similar. However, they locate in different neighborhoods with different land use types which can
be estimated as geographic priors by a location encoder. So the idea of geo-aware image classification is to combine (the red
box) the predictions from an image encoder (the orange box) and a location encoder (the blue box). The image encoder (the
orange box) can be a pretrained model such as an InceptionV3 network (Mac Aodha et al., 2019) for species recognition or a
MoCo-V2+TP (Ayush et al., 2020) for the RS image classification. We can append a separated image classifier Q at the end
of the image encoder F() and supervised fine-tune the whole image classification model on the corresponding training dataset to
obtain the probability distribution of image labels for a given image I, i.e., P (y|I). The location encoder (the blue box) can be
Sphere2Vec or any other inductive location encoders (Chu et al., 2019; Mac Aodha et al., 2019; Mai et al., 2020b; Mildenhall
et al., 2020). Supervised training of the location encoder Enc() together with a location classifier T can yield the geographic
prior distributions of image labels P (y|x). The predictions from both components are combined (multiplied) to make the final
prediction (the red box). The dotted lines indicates that there is no back-propagation through these lines.

search on problems such as climate extremes forecasting (Ham
et al., 2019), species distributionmodeling (Berg et al., 2014),
location representation learning (Mai et al., 2020b), and tra-
jectory prediction (Rao et al., 2020). Due to the lack of in-
terpretability of these deep neural network models, this issue
has not attracted much attentions by the whole geospatial
community.

It is acceptable that the projection errors might be ne-
glectable in small-scale (e.g., neighborhood-level or city-
level) geospatial studies. However, they become non-negligible
when we conduct research at a country scale or even global
scale. Meanwhile, demand on representation and prediction
learning at a global scale grows dramatically due to emerg-
ing global scale issues, such as the transition path of the
latest pandemic (Chinazzi et al., 2020), long lasting issue
for malaria (Caminade et al., 2014), under threaten global
biodiversity (Di Marco et al., 2019; Ceballos et al., 2020),
and numerous ecosystem and social system responses for
climate change (Hansen and Cramer, 2015). This trend ur-
gently calls for GeoAI models that can avoid map projection
errors and directly perform calculation on a round planet
(Chrisman, 2017). To achieve this goal, we need a represen-
tation learning model which can directly encode point coor-

dinates on a spherical surface into the embedding space such
that the resulting location embeddings preserve the spherical
distances (e.g., great circle distance3) between two points.
With such a representation, existing neural network architec-
tures can operate on spherical-distance-kept location embed-
dings to enable the ability of calculating on a round planet.

In fact, such location representation learning models are
usually termed location encoders which were originally de-
veloped to handle 2D or 3DCartesian coordinates (Chu et al.,
2019;MacAodha et al., 2019;Mai et al., 2020b; Zhong et al.,
2020; Mai et al., 2022b; Mildenhall et al., 2021; Schwarz
et al., 2020; Niemeyer and Geiger, 2021; Barron et al., 2021;
Marí et al., 2022; Xiangli et al., 2022). Location encoders
represent a point in a 2D or 3D Euclidean space (Zhong
et al., 2020; Mildenhall et al., 2021; Schwarz et al., 2020;
Niemeyer and Geiger, 2021) into a high dimensional embed-
ding such that the representations are more learning-friendly
for downstream machine learning models. For example,
Space2Vec (Mai et al., 2020b,a) was developed for POI
type classification, geo-aware image classification, and ge-
ographic question answering which can accurately model
point distributions in a 2D Euclidean space. Recently, sev-

3https://en.wikipedia.org/wiki/Great-circle_distance
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(a) Image (b) Arctic Fox (c) wrap (d) grid (e) spℎereC+

(f) Image (g) Bat-Eared Fox (h) wrap (i) grid (j) spℎereC+

(k) Image (l) Factory or powerplant (m) wrap (n) grid (o) dfs

(p) Image (q) Multi-unit residential (r) wrap (s) grid (t) dfs
Figure 2: Applying location encoders to differentiate two visually similar species ((a)-(j)) or two visually similar land use types
((k)-(t)). Arctic fox and bat-eared fox might look very similar visually as shown in (a) and (f). However, they have different spatial
distributions. (b) and (g) show their distinct patterns in species image locations. (c)-(e): The predicted distributions of Arctic
fox from different location encoders (without images as input). (h)-(j): The predicted distributions of bat-eared fox. Similarly,
it might be hard to differentiate factories/powerplants from multi-unit residential buildings only based on their overhead satellite
imgeries as shown in (k) and (p). However, as shown in (l) and (q), they have very different global spatial distributions. (m)-(o)
and (r)-(t) show the predicted spatial distributions of factories/powerplants and multi-unit residential buildings from different
location encoders. We can see that while wrap (Mac Aodha et al., 2019) produces a over-generalized spatial distribution,
spℎereC+ and dfs (our model) produces more compact and fine-grained distributions on the polar region and in data sparse
areas such as Africa (See Figure 2g-2j). grid (Mai et al., 2020b) is between the two. For more examples, please see Figure 13
and 14.

eral popular location/position encoders widely used in the
computer vision domain are also called neural implicit func-
tions (Anokhin et al., 2021a; He et al., 2021; Chen et al.,
2021; Niemeyer and Geiger, 2021) which follow the idea of
Neural Radiance Fields (NeRF) (Mildenhall et al., 2020) to
map a 2D or 3D point coordinates to visual signals via a
Fourier input mapping (Tancik et al., 2020; Anokhin et al.,
2021a; He et al., 2021), or so-called Fourier position encod-
ing (Mildenhall et al., 2020; Schwarz et al., 2020; Niemeyer
and Geiger, 2021), followed by a Multi-Layer Perception
(MLP). Until now, those 2D/3DEuclidean location encoders
have already shown promising performances onmultiple tasks
across different domains including geo-aware image clas-
sification (Chu et al., 2019; Mac Aodha et al., 2019; Mai
et al., 2020b), POI classification (Mai et al., 2020b), trajec-
tory prediction (Xu et al., 2018), geographic question an-
swering (Mai et al., 2020a), 2D image superresolution(Anokhin
et al., 2021a; Chen et al., 2021; He et al., 2021), 3D protein
structure reconstruction (Zhong et al., 2020), 3D scenes rep-
resentation for view synthesis (Mildenhall et al., 2020; Bar-
ron et al., 2021; Tancik et al., 2022; Marí et al., 2022; Xian-
gli et al., 2022) and novel image/view generation (Schwarz
et al., 2020; Niemeyer and Geiger, 2021). However, sim-
ilarly to above mentioned France case, when applying the
state-of-the-art (SOTA) 2DEuclidean location encoders (MacAodha
et al., 2019; Mai et al., 2020b) to large-scale real-world GPS

coordinate datasets such as remote sensing images taken all
over the world which require distance metric learning on
the spherical surface, amap projection distortion problem
(Williamson andBrowning, 1973; Chrisman, 2017) emerges,
especially in the polar areas. On the other hand, the NeRF-
style 3DEuclidean location encoders (Mildenhall et al., 2020;
Schwarz et al., 2020; Niemeyer and Geiger, 2021) are com-
monly used to model point distances in the 3D Euclidean
space, but not capable of accurately modeling the distances
on a complex manifold such as spherical surfaces. Directly
applying NeRF-style models on these datasets means these
models have to approximate the spherical distances with 3D
Euclidean distances which leads to a distance metric approx-
imation error. This highlights the necessity of such a spher-
ical location encoder discussed above.

In this work, we propose a multi-scale spherical loca-
tion encoder, Sphere2Vec, which can directly encode spher-
ical coordinates while avoiding the map projection distor-
tion and spherical-to-Euclidean distance approximation er-
ror. The multi-scale encoding method utilizes 2D Discrete
Fourier Transform4 basis (O(S2) terms) or a subset (O(S)
terms) of it while still being able to correctly measure the
spherical distance. Following previous work we use loca-
tion encoding to learn the geographic prior distribution of

4http://fourier.eng.hmc.edu/e101/lectures/Image_Processing/node6.
html
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different image labels so that given an image and its asso-
ciated location, we can combine the prediction of the loca-
tion encoder and that from the state-of-the-art image clas-
sification models, e.g., inception V3 (Szegedy et al., 2016),
to improve the image classification accuracy. Figure 1 illus-
trates the whole architecture. We demonstrate the effective-
ness of Sphere2Vec on geo-aware image classification tasks
including fine-grained species recognition (Chu et al., 2019;
Mac Aodha et al., 2019; Mai et al., 2020b), Flickr image
recognition (Tang et al., 2015; Mac Aodha et al., 2019), and
remote sensing image classification (Christie et al., 2018;
Ayush et al., 2020). Figure 2c-2e and 2h-2j show the pre-
dicted species distributions of Arctic fox and bat-eared fox
from three different models. Figure 2m-2o and 2r-2t show
the predicted land use distributions of factory or powerplant
andmulti-unit residential building from three different mod-
els. In summary, the contributions of our work are:

1. We propose a spherical location encoder, Sphere2Vec,
which, as far as we know, is the first inductive em-
bedding encoding scheme which aims at preserving
spherical distance. We also developed a unified view
of distant reserving encodingmethods on spheres based
onDouble Fourier Sphere (DFS) (Merilees, 1973; Orszag,
1974).

2. We provide theoretical proof that Sphere2Vec encod-
ings can preserve spherical surface distances between
points. As a comparison, we also prove that the 2D
location encoders (Gao et al., 2019; Mai et al., 2020b,
2023c) model latitude and longitude differences sepa-
rately, and NeRF-style 3D location encoders (Milden-
hall et al., 2020; Schwarz et al., 2020; Niemeyer and
Geiger, 2021)model axis-wise differences between two
points in 3DEuclidean space separately – none of them
can correctly model spherical distances.

3. We first conduct experiments on 20 synthetic datasets
generated based on the mixture of von Mises–Fisher
distribution (MvMF).We show that Sphere2Vec is able
to outperform all baselines including the state-of-the-
art (SOTA) 2D location encoders and NeRF-style 3D
location encoders on all 20 synthetic datasets with an
up to 30.8% error rate reduction. Results show that 2D
location encoders are more powerful than NeRF-style
3D location encoders on all synthetic datasets. And
comparedwith those 2D location encoders, Sphere2Vec
is more effective when the dataset has a large data bias
toward the polar area.

4. We also conduct extensive experiments on seven real-
world datasets for three geo-aware image classifica-
tion tasks. Results show that due to its spherical dis-
tance preserving ability, Sphere2Vec outperforms both
the SOTA2D location encodermodels andNeRF-style
3D location encoders.

5. Further analysis shows that compared with 2D loca-
tion encoders, Sphere2Vec is able to produce finer-
grained and compact spatial distributions, and does
significantly better in the polar regions and areas with
sparse training samples.

The rest of this paper is structured as follows. In Section
2, we motivate our work by highlighting the importance of
the idea of calculating on the round planet. Then, we pro-
vide a formal problem formulation of spherical location rep-
resentation learning in Section 3. Next, we briefly sum-
marize the related work in Section 4. The main contribu-
tion - Sphere2Vec - is detailed discussed in Section 5. Then,
Section 6 lists all baseline models we consider in this work.
The theoretical limitations of 2D location encoder grid as
well as NeRF style 3D location encoders are discussed in
Section 7. Section 8 presents the experimental results on
the synthetic datasets. Then, Section 9 presents our exper-
imental results on 7 real-world datasets for geo-aware im-
age classification. Finally, we conclude this paper in Sec-
tion 10. Code and data of this work are available at https:
//gengchenmai.github.io/sphere2vec-website/.

2. Calculating on a Round Planet
The blindness to the round Earth or the inappropriate us-

age of map projections can lead to tremendous and unex-
pected effects especially when we study a global scale prob-
lem sincemap projection distortion is unavoidable when pro-
jecting spherical coordinates into 2D space.

There are no map projection can preserve distances at all
direction. The so-called equidistant projection can only pre-
serve distance on one direction, e.g., the longitude direction
for the equirectangular projection (See Figure 3d), while the
conformal map projections (See Figure 3a) can preserve di-
rections while resulting in a large distance distortion. For a
comprehensive overview of map projections and their dis-
tortions, see Mulcahy and Clarke (2001).

When we estimate probability distributions at a global
scale (e.g., species distributions or land use types over the
world) with a neural network architecture, using 2DEuclidean-
based GeoAI models with projected spatial data instead of
directly modeling these distributions on a spherical surface
will lead to unavoidable map projection distortions and sub-
optimal results. This highlights the importance of calculat-
ing on a round planet (Chrisman, 2017) and necessity of a
spherical distance-kept location encoder.

3. Problem Formulation
Distributed representation of point-features on the spher-

ical surface can be formulated as follows. Given a set of
points  = {xi} on the surface of a sphere S2, e.g., lo-
cations of remote sensing images taken all over the world,
where xi = (�i, �i) ∈ S2 indicates a point with longitude
�i ∈ [−�, �) and latitude �i ∈ [−�∕2, �∕2]. Define a func-tion Enc ,�(x) ∶ S2 → ℝd , which is parameterized by �
and maps any coordinate x in a spherical surface S2 to a
vector representation of d dimension. In the following, we
use Enc(x) as an abbreviation for Enc ,�(x).Let Enc(x) = NN(PES (x)) where NN() is a learn-
able multi-layer perceptron with ℎ hidden layers and k neu-
rons per layer. We want to find a position encoding function
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(a) Mercator (b) Miller (c) Sinusoidal (d) Equirectangular
Figure 3: An illustration for map projection distortion: (a)-(d): Tissot indicatrices for four projections. The equal area circles are
putted in different locations to show how the map distortion affect its shape.

PES (x) which does a one-to-one mapping from each point
xi = (�i, �i) ∈ S2 to a multi-scale representation with S be
the total number of scales.

We expect to find a function PES (x) such that the re-
sulting multi-scale representation of x preserves the spheri-
cal surface distance while it is more learning-friendly for the
downstream neuron network model NN(). More concretely,
we’d like to use position encoding functions which satisfy
the following requirement:
⟨PES (x1), PES (x2)⟩ = f (ΔD),∀x1, x2 ∈ S2, (1)
where ⟨⋅, ⋅⟩ is the cosine similarity function between two em-
beddings. ΔD ∈ [0, �R] is the spherical surface distance
between x1, x2, R is the radius of this sphere, and f (x) is a
strictly monotonically decreasing function for x ∈ [0, �R].

4. Related Work

4.1. Neural Implicit Functions and NeRF
As an increasingly popular family of models in the com-

puter vision domain, neural implicit functions (Anokhin et al.,
2021a; He et al., 2021; Chen et al., 2021; Niemeyer and
Geiger, 2021) refer to the neural network architectures that
directly map a 2D or 3D coordinates into visual signals via
a Fourier input mapping/position encoding (Tancik et al.,
2020; Anokhin et al., 2021a; He et al., 2021; Mildenhall
et al., 2020; Schwarz et al., 2020; Niemeyer andGeiger, 2021),
followed by a Multi-Layer Perception (MLP).

A good example is Neural Radiance Fields (NeRF) (Milden-
hall et al., 2020), which combines neural implicit functions
and volume rendering for novel view synthesis for 3D com-
plex scenes. The idea of NeRF becomes very popular and
many follow-up works have been done to revise the NeRF
model in order to achieve more accurate view synthesis. For
example, NeRF in theWild (NeRF-W) (Martin-Brualla et al.,
2021) was proposed to learn separate transient phenomena
from each static scene to make the model robust to radiomet-
ric variation and transient objects. Shadow NeRF (S-NeRF)
(Derksen and Izzo, 2021) was proposed to exploit the direc-
tion of solar rays to obtain a more realistic view synthesis

on multi-view satellite photogrammetry. Similarly, Satellite
NeRF (Sat-NeRF) (Marí et al., 2022) combines NeRF with
native satellite camera models to achieve robustness to tran-
sient phenomena that cannot be explained by the position of
the sun to solve the same task. A more noticeable example is
GIRAFFE (Niemeyer and Geiger, 2021) which is a NeRF-
based deep generative model which achieves a more control-
lable image synthesis. All these NeRF variations mentioned
above use the same NeRF Fourier position encoding. And
they all use this position encoding in the same generative
task – novel image synthesis. Moreover, although S-NeRF
and Sat-NeRF work on geospatial data, i.e., satellite images,
they focus on rather small geospatial scales, e.g., city scales,
in which map projection distortion can be ignored. In con-
trast, we investigate the advantages and drawbacks of various
location encoders in large-scale (e.g., global-scale) geospa-
tial prediction tasks which are discriminative tasks. We use
NeRF position encoding as one of our baselines.

Several works also discussed the possibility to revise
NeRF position encoding. The original encodingmethod takes
a single 3D point as input which ignores both the relative
footprint of the corresponding image pixel and the length
of the interval along the ray which leads to aliasing arti-
facts when rendering novel camera trajectories (Tancik et al.,
2022). To fix this issue, Mip-NeRF (Barron et al., 2021)
proposed a new Fourier position encoding called integrated
positional encoding (IPE). Instead of encoding one single
3D point, IPE encodes 3D conical frustums approximated
by multivariate Gaussian distributions which are sampled
along the ray based on the projected pixel footprints. Block-
NeRF (Tancik et al., 2022) adopted the IPE idea and showed
how to scale NeRF to render city-scale scenes. Similarly,
BungeeNeRF (Xiangli et al., 2022) also used the IPE model
to develop a progressive NeRF that can do multi-scale ren-
dering for satellite images in different spatial scales. In this
work, we focus on encoding a single point on the spherical
surface, not a 3D conical frustums. So IPE is not considered
as one of the baselines.

Neural implicit functions are also popular for other com-
puter vision tasks such as image superresolution (Anokhin
et al., 2021a; Chen et al., 2021; He et al., 2021) and image
compression (Dupont et al.; Strümpler et al., 2022).
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4.2. Location Encoder
Location encoders (Chu et al., 2019; Mac Aodha et al.,

2019;Mai et al., 2020b; Zhong et al., 2020;Mai et al., 2023c)
are neural network architectures which encode points in low-
dimensional (2D or 3D) spaces (Zhong et al., 2020)) into
high dimensional embeddings. There has been much re-
search on developing inductive learning-based location en-
coders. Most of them directly apply Multi-Layer Perceptron
(MLP) to 2D coordinates to get a high dimensional location
embedding for downstream tasks such as pedestrian trajec-
tory prediction (Xu et al., 2018) and geo-aware image clas-
sification (Chu et al., 2019). Recently, Mac Adoha et al.
(Mac Aodha et al., 2019) apply sinusoid functions to encode
the latitude and longitude of each image before feeding into
MLPs. All of the above approaches deploy location encod-
ing at a single-scale.

Inspired by the position encoder in Transformer (Vaswani
et al., 2017) and Neuroscience research on grid cells (Ban-
ino et al., 2018; Cueva and Wei, 2018) of mammals, Mai
et al. (2020b) proposed to apply multi-scale sinusoid func-
tions to encode locations in 2D Euclidean space before feed-
ing into MLPs. The multi-scale representations have ad-
vantage of capturing spatial feature distributions with dif-
ferent characteristics. Similarly, Zhong et al. (2020) utilized
a multi-scale location encoder for the position of proteins’
atoms in 3D Euclidean space for protein structure recon-
struction with great success. Location encoders can be in-
corporated into the state-of-art models formany tasks tomake
them spatially explicit (Yan et al., 2019a; Janowicz et al.,
2020; Mai et al., 2022a, 2023c).

Comparedwithwell-established kernel-based approaches
(Schölkopf, 2001; Xu et al., 2018) such as Radius Based
Function (RBF) which requires memorizing the training ex-
amples as the kernel centers for a robust prediction, inductive-
learning-based location encoders (Chu et al., 2019;MacAodha
et al., 2019; Mai et al., 2020b; Zhong et al., 2020) have many
advantages: 1) They are more memory efficient since they
do not need to memorize training samples; 2) Unlike RBF,
the performance on unseen locations does not depend on the
number and distribution of kernels. Moreover, Gao et al.
(2019) have shown that grid-like periodic representation of
locations can preserve absolute position information, rela-
tive distance, and direction information in 2DEuclidean space.
Mai et al. (2020b) further show that it benefits the general-
izability of down-stream models. For a comprehensive sur-
vey of different location encoders, please refer to Mai et al.
(2022b).

Despite all these successes in location encoding research,
none of them consider location representation learning on a
spherical surface which is in fact critical for a global scale
geospatial study. Our work aims at filling this gap.
4.3. Machine Learning Models on Spheres

Recently, there has been an increasing amount of work
on designing machine learning models for prediction tasks
on spherical surfaces. For the omnidirectional image classi-
fication task, both Cohen et al. (2018) and Coors et al. (2018)

designed different spherical versions of the traditional con-
volutional neural network (CNN) models in which the CNN
filters explicitly consider map projection distortion. In terms
of image geolocalization (Izbicki et al., 2019a) and text ge-
olocalization (Izbicki et al., 2019b), a loss function based on
the mixture of von Mises-Fisher distributions (MvMF)– a
spherical analog of the Gaussian mixture model (GMM)– is
used to replace the traditional cross-entropy loss for geolo-
calization models (Izbicki et al., 2019a,b). All these works
are closely related to geometric deep learning (Bronstein et al.,
2017). They show the importance to consider the spherical
geometry instead of projecting it back to a 2D plane, yet none
of them considers representation learning of spherical coor-
dinates in the embedding space.
4.4. Spatially Explicit Artificial Intelligence

There has beenmuchwork in improving the performance
of current state-of-the-art artificial intelligence and machine
learning models by using spatial features or spatial induc-
tive bias – so-called spatially explicit artificial intelligence
(Yan et al., 2017;Mai et al., 2019; Yan et al., 2019a,b; Janow-
icz et al., 2020; Li et al., 2021; Zhu et al., 2021; Janowicz
et al., 2022; Liu and Biljecki, 2022; Zhu et al., 2022; Mai
et al., 2022a, 2023b; Huang et al., 2023), or SpEx-AI. The
spatial inductive bias in these models includes: spatial de-
pendency (Kejriwal and Szekely, 2017; Yan et al., 2019a),
spatial heterogeneity (Berg et al., 2014; Chu et al., 2019;
Mac Aodha et al., 2019; Mai et al., 2020b; Zhu et al., 2021;
Gupta et al., 2021; Xie et al., 2021), map projection (Cohen
et al., 2018; Coors et al., 2018; Izbicki et al., 2019a,b), scale
effect (Weyand et al., 2016; Mai et al., 2020b), and so on.
4.5. Pseudospectral Methods on Spheres

Multiple studies have been focused on the numerical so-
lutions on spheres, for example, inweather prediction (Orszag,
1972, 1974; Merilees, 1973). The main idea is so-called
pseudospectral methods which leverage truncated discrete
Fourier transformation on spheres to achieve computation
efficiency while avoiding the error caused by map projec-
tion distortion. The particular set of basis functions to be
used depends on the particular problem. However, they do
not aim at learning good representations in machine learning
models. In this study, we try to make connections to these
approaches and explore how their insights can be realized in
a deep learning model.

5. Method
Our main contribution - the design of spherical distance-

kept location encoder Enc(x), Sphere2Vec will be presented
in Section 5.1. We developed a unified view of distance-
reserving encoding on spheres based onDouble Fourier Sphere
(DFS) (Merilees, 1973; Orszag, 1974). The resulting loca-
tion embedding p[x] = Enc(x) is a general-purpose embed-
ding which can be utilized in different decoder architectures
for various tasks. In Section 5.2, we briefly show how to
utilize the proposed Enc(x) in the geo-aware image classifi-
cation task.
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(a) dfs (b) grid (c) spℎereC (d) spℎereC+ (e) spℎereM (f) spℎereM+

Figure 4: Patterns of different encoders, blue points at (�(m), �(n)) mean interaction terms of trigonometric functions of �(m) and
�(n) are included in the encoder, � and � axis correspond to single terms with no interactions.

5.1. Sphere2Vec
The multi-scale location encoder defined in Section 3 is

in the form of Enc(x) = NN(PES (x)). PES (x) is a con-
catenation of multi-scale spherical spatial features of S lev-
els. In the following, we call Enc(x) location encoder and
its component PES (x) position encoder.
dfs Double Fourier Sphere (DFS) (Merilees, 1973; Orszag,
1974) is a simple yet successful pseudospectralmethod, which
is computationally efficient and have been applied to analy-
sis of large scale phenomenons such as weather (Sun et al.,
2014) and blackholes (Bartnik and Norton, 2000). Our first
intuition is to use the base functions of DFS, which preserve
periodicity in both the longitude and latitude directions, to
help decompose x = (�, �) into a high dimensional vector:

PEdfsS (x) =
S−1
⋃

n=0
[sin�(n), cos�(n)] ∪

S−1
⋃

m=0
[sin �(m), cos �(m)]∪

S−1
⋃

n=0

S−1
⋃

m=0
[cos�(n) cos �(m), cos�(n) sin �(m),

sin�(n) cos �(m), sin�(n) sin �(m)],
(2)

where �(m) = �
r(m) , �(n) = �

r(n) . r(m) and r(n) are scalingfactors controlled by the current scalem and n. Let rmin, rmaxbe theminimum andmaximum scaling factor, and g = rmax
rmin

.5
r(s) = rmin ⋅ gs∕(S−1) where s is either m or n. ∪ means
vector concatenation and ⋃S−1

s=0 indicates vector concatena-
tion through different scales. It basically lets all the S scales
of � terms interact with all the S scales of � terms in the
encoder. This would introduce a position encoder with a
O(S2) dimension output which increases the memory bur-
den in training and hurts generalization. See Figure 4a for
an illustration of the used O(S2) terms. An encoder might
achieve better results by only using a subset of these terms.

In comparison, the state-of-the-art grid (Mai et al., 2020b)
encoder defines its position encoder as:

PEgridS (x) =
S−1
⋃

s=0
[sin�(s), cos�(s), sin �(s), cos �(s)]. (3)

Here, �(s) and �(s) have similar definitions as �(m) and
�(n) in Equation 2. Figure 4b illustrates the used terms of
grid. We can see that grid employs a subset of terms from
dfs. However, as we explained earlier, grid performs poorly

5In practice we fix rmax = 1 meaning no scaling of �, �.

at a global scale due to its inability to preserve spherical dis-
tances.

In the followingwe explore different subsets of DFS terms
while achieving two goals: 1) efficient representation with
O(S) dimensions 2) preserving distancemeasures on a spher-
ical surface.
spℎereC Inspired by the fact that any point (x, y, z) in 3D
Cartesian coordinate can be expressed by sin and cos basis
of spherical coordinates (�, � plus radius) 6, we define the
basic form of Sphere2Vec, namely spℎereC encoder:

PEspℎereCS (x) =
S−1
⋃

s=0
[sin�(s), cos�(s) cos �(s), cos�(s) sin �(s)].

(4)
Figure 4c illustrates the used terms of spℎereC . To il-

lustrate that spℎereC is good at capturing spherical distance,
we take a close look at its basic case S = 1. When S = 1
and rmax = 1, there is only one scale s = S − 1 = 0 and
we define r(s) = rmin ⋅ gs∕(S−1) = rmax = 1. The multi-scale
encoder degenerates to
PEspℎereC1 (x) = [sin(�), cos(�) cos(�), cos(�) sin(�)]. (5)
These three terms are included in the multi-scale version
(S > 1) and serve as the main terms at the largest scale
and also the lowest frequency (when s = S − 1). The high
frequency terms are added to help the downstream neuron
network to learn the point-feature more efficiently (Tancik
et al., 2020). Interestingly, PEspℎereC1 captures the spherical
distance in a very explicit way:
Theorem 1. Let x1, x2 be two points on the same sphere S2
with radius R, then

⟨PEspℎereC1 (x1), PE
spℎereC
1 (x2)⟩ = cos(

ΔD
R
), (6)

where ΔD is the great circle distance between x1 and x2.
Under this metric,

‖PEspℎereC1 (x1) − PE
spℎereC
1 (x2)‖ = 2 sin(

ΔD
2R

). (7)

Moreover, ‖PEspℎereC1 (x1) − PE
spℎereC
1 (x2)‖ ≈

ΔD
R ,when

ΔD is small w.r.t. R.
6https://en.wikipedia.org/wiki/Spherical_coordinate_system
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See the proof in Appendix A.1.
Since the central angle Δ� = ΔD

R ∈ [0, �] and cos(x)
is strictly monotonically decrease for x ∈ [0, �], Theorem 1
shows that PEspℎereC1 (x) directly satisfies our expectation in
Equation 1 where f (x) = cos( xR ).
spℎereM Considering the fact thatmany geographical pat-
terns are more sensitive to either latitude (e.g., temperature,
sunshine duration) or longitude (e.g., timezones, geopoliti-
cal borderlines), we might want to focus on increasing the
resolution of either � or � while holding the other relatively
at a large scale. Therefore, we introduce a multi-scale posi-
tion encoder spℎereM , where interaction terms between �
and � always have one of them fixed at the top scale:

PEspℎereMS (x) =
S−1
⋃

s=0
[sin�(s), cos�(s) cos �, cos� cos �(s),

cos�(s) sin �, cos� sin �(s)].
(8)

This new encoder ensures that the � term interact with all
the scales of � terms (i.e., �(s) terms) and � term interact
with all the scales of � terms (i.e., �(s) terms). See Fig-
ure 4e for the used terms of spℎereM . Both PEspℎereCS and
PEspℎereMS are multi-scale versions of a spherical distance-
kept encoder (See Equation 5) and keep that as the main term
in their multi-scale representations.
spℎereC+ and spℎereM+ From the above analysis of
the two proposed position encoders and the SOTA grid en-
coders, we know that grid pays more attention to the sum
of cos difference of latitudes and longitudes, while our pro-
posed encoders paymore attention to the spherical distances.
In order to capture both information, we consider merging
grid with each proposed encoders to getmore powerfulmod-
els that encode geographical information from different an-
gles.
PEspℎereC+S (x) = PEspℎereCS (x) ∪ PEgridS (x), (9)
PEspℎereM+

S (x) = PEspℎereMS (x) ∪ PEgridS (x). (10)
We hypothesize that encoding these terms in the multi-scale
representation would make the training of the encoder easier
and the order of output dimension is still O(S). See Figure
4d and 4f for the used terms of spℎereC+ and spℎereM+.

In location encoding, the uniqueness of the encoding re-
sults (i.e., no two different points on a sphere having the same
position encoding) is very important. PES (x) in the five
proposed methods are by design one-to-one mapping.
Theorem 2. ∀ ∗∈ {dfs, spℎereC, spℎereC+, spℎereM,
spℎereM+}, PE∗S (x) is an injective function.

See the proof in Appendix A.2.
5.2. Applying Sphere2Vec to Geo-Aware Image

Classification
Follow the practice of Mac Aodha et al. (2019) and Mai

et al. (2020b), we formulate the geo-aware image classifica-

tion task (Chu et al., 2019;MacAodha et al., 2019) as follow:
Given an image I taken from location/point x, we estimate
which category y it belongs to. If we assume that I and x are
independent given y and an even-prior P (y), then we have

P (y|I, x) = P (I, x|y)P (y)
P (I, x)

= P (I|y)P (x|y) P (y)
P (I, x)

(11)

=
P (y|I)P (I)
P (y)

P (y|x)P (x)
P (y)

P (y)
P (I, x)

(12)

= P (y|x)P (y|I) P (I)P (x)
P (y)P (I, x)

∝ P (y|x)P (y|I) (13)

P (y|I) can be obtained by fine-tuning the state-of-the-art im-
age classification model for a specific task, such as a pre-
trained InceptionV3 network (Mac Aodha et al., 2019) for
species recognition, or a pretrained MoCo-V2+TP (Ayush
et al., 2020) for RS image classification. To be more spe-
cific, we use a pretrained image encoder F() to extract the
embedding for each input image, i.e., F(I). Then in order to
compute P (y|I), we can either 1) fine-tune an image classi-
fier Q based on these frozen image embeddings, or 2) fine-
tune the whole image encoder architecture Q(F(I)). Here,
Q is a multilayer perceptron (MLP) followed by a softmax
activation function. Both Mac Aodha et al. (2019) and Mai
et al. (2020b) adopted the second approach which fine-tunes
the whole image classification architecture. We also adopt
the second approach to have a fair comparison with all these
previous methods. Please refer to Section 9.4.3 for an abla-
tion study on this. The idea is illustrated in the orange box
in Figure 1.

In this work, we focus on the second component – es-
timating the geographic prior distribution of image label y
over the spherical surface P (y|x) (the blue box in Figure
1). This probability distribution can be estimated by us-
ing a location encoder Enc(). We can use either our pro-
posed Sphere2Vec or some existing 2D (Mai et al., 2020b;
Mac Aodha et al., 2019; Chu et al., 2019) or 3D (Marí et al.,
2022; Martin-Brualla et al., 2021) Euclidean location en-
coders. More concretely, we have P (y|x) ∝ �(Enc(x)T∶,y)
where �() is a sigmoid activation function. T ∈ ℝd×c is a
class embedding matrix (the location classifier in Figure 1)
where the ytℎ column T∶,y ∈ ℝd indicates the class embed-
ding for class y. d indicates the dimension of location em-
bedding p[x] = Enc(x) and c is the total number of image
classes.

Themajor objective is to learnP (y|x) ∝ �(Enc(x)T∶,y)such that all observed species occurrences (all image loca-
tions x as well as their associated species class y) have max-
imum probabilities. Mac Aodha et al. (2019) used a loss
function which is based on maximum likelihood estimation
(MLE). Given a set of training samples - data points and
their associated class labels X = {(x, y)}, the loss function
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image(X) is defined as:
image(X) =

∑

(x,y)∈X

∑

x−∈ (x)

(

� log(�(Enc(x)T∶,y))

+
c
∑

i=1,i≠y
log(1 − �(Enc(x)T∶,i))

+
c
∑

i=1
log(1 − �(Enc(x−)T∶,i))

)

(14)

Here, � is a hyperparameter to increase the weight of
positive samples.  (x) represents the negative sample set of
point x in which x− ∈ (x) is a negative sample uniformly
generated from the spherical surface given each data point x.
Equation 14 can be seen as a modified version of the cross-
entropy loss used in binary classification. The first term is
the positive sample term weighted by �. The second term
is the normal negative term used in cross-entropy loss. The
third term is added to consider uniformly sampled locations
as negative samples.

Figure 1 illustrates the whole workflow. During training
time, the image classification module (the orange box) and
location classification module (the blue box) are supervised
trained separately. During the inference time, the probabil-
ities P (y|I) and P (y|x) computed from these two modules
are multiplied to yield the final prediction.

6. Baselines
In order to understand the advantage of spherical-distance-

kept location encoders, we compare different versions of Sphere2Vec
with multiple baselines:

• tile divides the study area A (e.g., the earth’s surface)
into grids with equal intervals along the latitude and
longitude direction. Each grid has an embedding to be
used as the encoding for every location x fall into this
grid. This is a common practice adopted by many pre-
vious works when dealing with coordinate data (Berg
et al., 2014; Adams et al., 2015; Tang et al., 2015).

• wrap is a location encodermodel introduced byMacAodha
et al. (2019). Given a location x = (�, �), it uses a co-
ordinate wrap mechanism to convert each dimension
of x into 2 numbers :
PEwrap1 (x) = [sin(�), cos(�), sin(2�), cos(2�)]. (15)
Then the results are passed through a multi-layered
fully connected neural network NNwrap() which con-
sists of an initial fully connected layer, followed by a
series ofℎ residual blocks, each consisting of two fully
connected layers (k hidden neurons) with a dropout
layer in between. We adopt the official code ofMacAodha
et al. (2019)7 for this implementation. We can see that
wrap still follows our general definition of location
encoders Enc(x) = NN(PES (x)) where S = 1.

7http://www.vision.caltech.edu/~macaodha/projects/geopriors/

• wrap+ ffn is similar to wrap except that it replaces
NNwrap()withNNffn(), a simple learnablemulti-layer
perceptron with ℎ hidden layers and k neurons per
layer as that Sphere2Vec has. wrap + ffn is used
to exclude the effect of different NN() on the perfor-
mance of location encoders. In the following, all lo-
cation encoder baselines use NNffn() as the learn-
able neural network component so that we can directly
compare the effect of different position encoding PE∗Son the model performance.

• xyz first converts xi = (�i, �i) ∈ S2 into 3DCartesian
coordinates (x, y, z) centered at the sphere center by
following Equation 16 before feeding into a multilayer
perceptron NN(). Here, we let (x, y, z) to locate on a
unit sphere with radius R = 1. As we can see, xyz
is just a special case of spℎereC when S = 1, i.e.,
PEspℎereC1 .

PExyzS (x) = [z, x, y] = PEspℎereC1

= [sin�, cos� cos �, cos� sin �]
(16)

• rbf randomly samplesM points from the training dataset
as RBF anchor points {xancℎorm , m = 1...M}, and use
gaussian kernels exp ( − ∥ xi − xancℎorm ∥2

2�2
) on each

anchor points, where � is the kernel size. Each input
point xi is encoded as a M-dimension RBF feature
vector, i.e., PErbfM , which is fed into NNffn() to ob-
tain the location embedding. This is a strong baseline
for representing floating number features in machine
learning models used by Mai et al. (2020b).

• rff , i.e.,RandomFourier Features (Rahimi andRecht,
2008; Nguyen et al., 2017), first encodes location x
into a D dimension vector - PErffD (x) = '(x) =
√

2
√

D

⋃D
i=1[cos (!

T
i x + bi)] where !i

i.i.d∼  (0, �2I) is
a direction vector whose each dimension is indepen-
dently sampled from a normal distribution. bi is uni-formly sampled from [0, 2�]. I is an identity matrix.
Each component of '(x) first projects x into a random
direction!i andmakes a shift by bi. Then it wraps thisline onto the unit cirle in ℝ2 with the cosine function.
Rahimi and Recht (2008) show that '(x)T'(x′) is an
unbiased estimator of the Gaussian kernal K(x, x′).
'(x) is consist of D different estimates to produce an
approximation with a further lower variance. To
make rff comparable to other baselines, we feed'(x)
intoNNffn() to produce the final location embedding.

• grid is amulti-scale location encoder on 2DEuclidean
space proposed by Mai et al. (2020b). Here, we sim-
ply treat x = (�, �) as 2D coordinate. It first use
PEgridS (x) shown in Equation 3 to encode location x
into a multi-scale representation and then feed it into
NNffn() to produce the final location embedding.
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• tℎeory is another multi-scale location encoder on 2D
Euclidean space proposed by Mai et al. (2020b). It
use a position encoder PEtℎeoryS (x) shown in Equa-
tion 17. Here, x(s) = [�(s), �(s)] = [ �r(s) , �

r(s) ] and a1 =
[1, 0]T , a2 = [−1∕2,

√

3∕2]T , a3 = [−1∕2,−
√

3∕2]T ∈
ℝ2 are three unit vectors which orient 2�∕3 apart from
each other. The encoding results are feed intoNNffn()
to produce the final location embedding.

PEtℎeoryS (x) =
S−1
⋃

s=0

3
⋃

j=1
[sin(⟨x(s), aj⟩), cos(⟨x(s), aj⟩)].

(17)

• NeRF indicates amultiscale location encoder adapted
from the positional encoder PENeRFS (x) used by Neu-
ral Radiance Fields (NeRF) (Mildenhall et al., 2020)
and many NeRF variations such as NeRF-W (Martin-
Brualla et al., 2021), S-NeRF (Derksen and Izzo, 2021),
Sat-NeRF (Marí et al., 2022), GIRAFFE (Niemeyer
and Geiger, 2021), etc., which was proposed for novel
view synthesis for 3D scenes. Here, NeRF can be
treated as a multiscale version of xyz. It first con-
verts x = (�, �) ∈ S2 into 3D Cartesian coordinates
(x, y, z) centered at the unit sphere center. Here, (x, y, z)
are normalized to lie in [−1, 1], i.e., R = 1. Differ-
ent from xyz, it uses NeRF-style positional encoder
PENeRFS (x) in Equation 18 to process (x, y, z) into
a multiscale representation. To make it comparable
with other location encoders, we further feedPENeRFS (x)
into NNffn() to get the final location embedding.

PENeRFS (x) =
S−1
⋃

s=0

⋃

p∈{z,x,y}
[sin(2s�p), cos(2s�p)],

wℎere [z, x, y] = [sin�, cos� cos �, cos� sin �].
(18)

All types of Sphere2Vec as well as all baseline models
we compared except tile share the same model set up -
Enc(x) = NN(PES (x)). The main difference is the posi-
tion encoder PES (x) used in different models. PES (x) usedby grid, tℎeory, NeRF , and different types of Sphere2Vec
encode the input coordinates in a multi-scale fashion by us-
ing different sinusoidal functions with different frequencies.
Many previous work call this practice “Fourier input map-
ping” (Rahaman et al., 2019; Tancik et al., 2020; Basri et al.,
2020; Anokhin et al., 2021b). The difference is that grid and
tℎeory use the Fourier features from 2D Euclidean space,
NeRF uses the predefined Fourier scales to directly encode
the points in 3D Euclidean space, while our Sphere2Vec uses
all or the subset of Double Fourier Sphere Features to take
into account the spherical geometry and the distance distor-
tion it brings.

All models are implemented in PyTorch. We use the
original implementation ofwrap fromMacAodha et al. (2019)

and the implementation of grid and tℎeory from Mai et al.
(2020b). Since the original implementation ofNeRF8 (Milden-
hall et al., 2020) is in TensorFlow, we reimplementNeRF in
PyTorch Framework by following their codes. We train and
evaluate each model on a Ubuntu machine with 2 GeForce
GTX Nvidia GPU cores, each of which has 10GB memory.

7. Theoretical Limitations of grid andNeRF

7.1. Theoretical Limitations of grid
We first provide mathematic proofs to demonstrate why

grid is not suitable to model spherical distances.
Theorem 3. Let x1, x2 be two points on the same sphere S2
with radius R, then we have

⟨PEgridS (x1), PE
grid
S (x2)⟩

=
S−1
∑

s=0

(

cos(�(s)1 − �(s)2 ) + cos(�
(s)
1 − �(s)2 )

)

=
S−1
∑

s=0

(

cos(
�1 − �2
r(s)

) + cos(
�1 − �2
r(s)

)
)

,

(19)

When S = 1, we have

⟨PEgrid1 (x1), PE
grid
1 (x2)⟩ = cos(�1 − �2) + cos(�1 − �2),

(20)
Theorem 3 is very easy to prove based on the angle differ-

ence formula, so we skip its proof. This result indicates that
grid models the latitude and longitude differences of x1 and
x2 independently rather than spherical distance. This intro-
duces problems when encoding locations in the polar area.
Let’s consider data pairs x1 = (�1, �) and x2 = (�2, �), the
distance between them in output space of PEgridS is:

‖PEgridS (x1) − PE
grid
S (x2)‖2

= ‖PEgridS (x1)‖2 + ‖PEgridS (x2)‖2

− 2⟨PEgridS (x1), PE
grid
S (x2)⟩

= 2 − 2
S−1
∑

s=0
cos(

�1 − �2
r(s)

)

(21)

This distance stays as a constant for any values of �. How-
ever, when � varies from −�

2 to �
2 , the actual spherical dis-tance changes in a wide range, e.g., the actual distance be-

tween the data pair at � = −�
2 (South Pole) is 0 while the

distance between the data pair at � = 0 (Equator), gets the
maximum value. This problem in measuring distances also
has a negative impact on grid’s ability to model distributions
in areas with sparse sample points because it is hard to learn
the true spherical distances.

In fact, in our experiments (S > 1), we observe that
grid reaches peak performance at much smaller rmin than

8https://github.com/bmild/nerf
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that of Sphere2Vec encodings. Moreover, spℎereC outper-
forms grid near polar regions where grid produces large dis-
tances though the spherical distances are small (A, B in Fig-
ure 1).

7.2. Theoretical Limitations ofNeRF
SinceNeRF is widely used for 3D representation learn-

ing (Mildenhall et al., 2020; Niemeyer and Geiger, 2021),
a natural question is why not just use NeRF for the geo-
graphic prediction tasks on the spherical surface, which can
be embedded in the 3D space. In this section, we discuss the
theoretical limitations of NeRF 3D multiscale encoding in
the scenario of spherical encoding.
Theorem 4. Let x1, x2 ∈ S2 be two points on the spheri-
cal surface. Given their 3D Euclidean representations, i.e.,
x1 = (z1, x1, y1), x2 = (z2, x2, y2), we defineΔx = x1−x2 =
[z1−z2, x1−x2, y1−y2] = [Δxz,Δxx,Δxy] as the difference
between them in the 3D Euclidean space. UnderNeRF en-
coding (Equation 18), the distance between them satisfies

‖PENeRFS (x1) − PENeRFS (x2)‖2

=
S−1
∑

s=0

(

4 sin2(2s−1�Δxz) + 4 sin2(2s−1�Δxx)

+ 4 sin2(2s−1�Δxy)
)

=
S−1
∑

s=0
4‖Ys‖2,

(22)

whereYs = [sin(2s−1�Δxz), sin(2s−1�Δxx), sin(2s−1�Δxy)].

See the proof in Appendix A.2.

Theorem 5. NeRF is not an injective function.

Theorem 5 is very easy to prove based on Theorem 4.
Since NeRF requires R = 1, when x1 = (1, 0, 0) and x2 =
(−1, 0, 0), i.e., they are the north and south pole, we have
Δx = [2, 0, 0]. The distance between theirmultiscaleNeRF
encoding is,

‖PENeRFS (x1) − PENeRFS (x2)‖2 =
S−1
∑

s=0
4 sin2(2s�) = 0,

(23)
Since Equation 22 is symmetrical for the x,y, and z axis,
we will have the same problems when x1 = (0, 1, 0), x2 =
(0,−1, 0) or x1 = (0, 0, 1), x2 = (0, 0,−1). This indicates
that even though these three pairs of points have the largest
spherical distances, they have identical NeRF multiscale
representations. This illustrates that NeRF is not an injec-
tive function.

Theorem 4 shows that, unlike Sphere2Vec, the distance
between twoNeRF location embedding is not a monotonic
increasing function of ΔD, but a non-monotonic function

of the coordinates of Δx, the axis-wise differences between
two points in 3D Euclidean space. So NeRF does not pre-
serve spherical distance for spherical points, but rather mod-
els Δxz,Δxx,Δxy separately.

8. Experiments with Synthetic Datasets
Theorem 1 and 2 provide theoretical guarantees of Sphere2Vec

for spherical distance preservation. To empirically verify the
effectiveness of Sphere2Vec in a controlled setting, we con-
struct a set of synthetic datasets and evaluate our Sphere2Vec
and all baseline models on these datasets. To make a simpler
task, different from the setting shown in Figure 1, we skip the
image encoder component and only focus on the location en-
coder training and evaluation. For each synthetic dataset, we
simulate a set of spherical coordinates as the geo-locations of
images to train different location encoders. And in the eval-
uation step, the performances of different models are com-
puted directly based on P (y|x) only, but not P (y|x)P (y|I).
8.1. Synthetic Dataset Generation

Weutilize the vonMises–Fisher distribution (vMF ) (Izbicki
et al., 2019a), an analogy of the 2D Gaussian distribution on
the spherical surface S2 to generate synthetic data points9.
The probability density function of vMF is defined as
vMF (x;�, �) = �

2� sinh(�)
exp(��T�(x)) (24)

where �(x) = [x, y, z] = [cos� cos �, cos� sin �, sin�],
which converts x into a coordinates in the 3DEuclidean space
on the surface of a unit sphere. A vMF distribution is con-
trolled by two parameters – the mean direction � ∈ ℝ3 and
concentration parameter � ∈ ℝ+. � indicates the center of a
vMF distribution which is a 3D unit vector. � is a positive
real number which controls the concentration of vMF . A
higher � indicates more compact vMF distribution, while
� = 1 correspond to a vMF distribution with standard de-
viation covering half of the unit sphere.

To simulatemulti-modal distributions, we generate spher-
ical coordinates based on a mixture of vonMises–Fisher dis-
tributions (MvMF). We assume  classes with even prior,
and each classes follows a vMF distribution. To create a
dataset we first sample  sets of parameters {(�i, �i)} ( =
50). Then we draw  samples, i.e., spherical coordinates,
for each class ( = 100). So in total, each generated syn-
thetic dataset has 5000 data points for 50 balanced classes.

The concentration parameter �i is sampled by first draw-
ing r from an uniform distribtuion U (�min, �max), and then
take the square r2. The square helps to avoid sampling many
large �i which yield very concentrated vMF distributions
that are rather easy to be classified. We fix �min = 1 and
vary �max in [16, 32, 64, 128].For the center parameter �i we adopt two sampling ap-
proaches:

9https://www.tensorflow.org/probability/api_docs/python/tfp/
distributions/VonMisesFisher#sample
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(a) U1 dataset in 2D degree Space (�max = 16) (b) U2 dataset in 2D degree Space (�max = 32)

(c) U3 dataset in 2D degree Space (�max = 64) (d) U4 dataset in 2D degree Space (�max = 128)

(e) U4 dataset in 3D space (�max = 128)
Figure 5: The data distributions of four synthetic datasets (U1, U2, U3, and U4) generated from the uniform sampling method.
(e) shows the U4 dataset in a 3D Euclidean space. We can see that if we treat these datasets as 2D data points as grid and
tℎeory, the vMF distributions in the polar areas will be stretched and look like 2D aniostropic multivariate Gaussian distributions.
However, this kind of systematic bias can be avoided if we use a spherical location encoder as Spℎere2V ec.

1. Uniform Sampling: We uniformly sample  centers
(�i) from the surface of a unit sphere. We generate
four synthetic datasets (for different values of �max)and indicate them as U1, U2, U3, U4. See Table 1 for
the parameters we use to generate these datasets.

2. Stratified Sampling: We first evenly divide the lat-

itude range [−�∕2, �∕2] into N� intervals. Then we
uniformly sample � centers (�i) from the spherical
surface defined by each latitude interval. Since the
latitude intervals in polar regions have smaller spher-
ical surface area, this stratified sampling method has
higher density in the polar regions. We keep N� ×
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(a) S1.3 dataset in 2D degree Space (N� = 5) (b) S2.3 dataset in 2D degree Space (N� = 10)

(c) S3.3 dataset in 2D degree Space (N� = 25) (d) S4.3 dataset in 2D degree Space (N� = 50)
Figure 6: The data distributions of four synthetic datasets (S1.3, S2.3, S3.3, and S4.3) generated from the stratified sampling
method with �max = 64. We can see that when N� increases, a more fine-grain stratified sampling is carried out. The resulting
dataset has a larger data bias toward the polar areas.

� =  = 50 fixed and varies N� in [5, 10, 25, 50].
Combinedwith the 4 �max choices, this procedure yields16 different synthetic datasets. We denote them as
Si.j. See Table 1 for the parameters we use to gen-
erate these datasets.

Figure 5a-5d visualize the data point distributions of U1,
U2, U3, U4which derived from the uniform samplingmethod
in 2D space. Figure 5e visualized the U4 dataset in a 3D Eu-
clidean space. We can see that when �max is larger, the vari-ation of point density among different vMF distributions
becomes larger. Some vMF are very concentrated and the
resulting data points are easier to be classified. Moreover, if
we treat these datasets as 2D data points as grid and tℎeory
do, vMF distributions in the polar areas will be stretched to
very extended shapes making model learning more difficult.
However, this kind of systematic bias can be avoided if we
use a spherical location encoder as Sphere2Vec.

Figure 6 visualizes the data distributions of four syn-
thetic datasets with stratified sampling method. They have
differentN� but the same �max. We can see that whenN� in-creases, a more fine-grain stratified sampling is carried out.
The resulting dataset has a larger data bias toward the polar
areas.

8.2. Synthetic Dataset Evaluation Results
We evaluate all baseline models as well as spℎereM+

on those generated 20 syhthetic datasets as described above.
For each model, we do grid search on their hyperparame-
ters for each dataset including supervised learning rate lr,
the number of scales S, the minimum scaling factor rmin,the number of hidden layers and number of neurons used in
NNffn(⋅) – ℎ and k. The best performance of each model is
reported in Table 1. We use Top1 as the evaluation metric.
The Topk classification accuracy is defined as follow

TOPk =
1

||

||

∑

i=1
1(Rank(xi, yi) ⩾ k) (25)

where  = {(xi, yi)} is a set of location xi and label yituples which indicates the whole validation or testing set.
|| denotes the total number of samples in. Rank(xi, yi)indicates the rank of the ground truth label yi in the ranked
listed of all classes based on the probability score P (yi|xi)given by a specific location encoder. A lower rank indicates a
better model prediction. 1(∗) is a function return 1 when the
condition ∗ is true and 0 otherwise. A higher Topk indicates
a better performance.

Some observations can be made from Table 1:
Mai et al.: Preprint submitted to Elsevier Page 13 of 29



Sphere2Vec

Table 1
Compare spℎereM+ to baselines on synthetic datasets. We use Top1 as the evaluation metric. U1 - U4 indicate 4 synthetic
datasets generated based on the uniform sampling approach (see Section 8.1). S1.1 - S4.4 indicate 16 synthetic datasets generated
based on the stratified sampling apprach. For all datasets have  = 50 and  = 100. For each model, we perform grid search
on its hyperparameters for each dataset and report the best Top1 accuracy. The ΔT op1 column shows the absolute performance
improvement of spℎereM+ over the best baseline model (bolded) for each dataset. The ER column shows the relative reduction
of error compared to the best baseline model (bolded). We can see that spℎereM+ can outperform all other baseline models on
all of these 20 synthetic datasets. The absolute Top1 accuracy improvement can be as much as 2.0% for datasets with lower
precisions, and the error rate deduction can be as much as 30.8% for datasets with high precisions.

ID Method N� � �min �max xyz wrap wrap+ffn rff rbf grid tℎeory NeRF spℎereM+ ΔT op1 ER
U1

uniform - - 1

16 67.2 67.0 66.9 66.8 46.6 68.6 67.8 62.7 69.2 0.6 -1.9
U2 32 73.1 75.1 73.9 72.3 58.4 76.2 76.5 72.5 77.4 0.9 -3.8
U3 64 86.1 90.1 88.3 89.0 91.7 92.3 92.7 90.1 93.3 0.6 -8.2
U4 128 91.8 94.9 92.3 92.5 97.4 97.5 97.7 95.7 98.0 0.3 -13.0
S1.1

stratified

5 10 1

16 68.7 69.7 68.8 68.6 70.5 69.5 69.4 66.5 72.3 1.8 -6.1
S1.2 32 76.7 79.1 78.1 78.4 81.1 81.2 79.2 76.1 82.9 1.7 -9.0
S1.3 64 91.2 92.5 92.9 92.6 94.7 94.8 94.9 92.1 95.4 0.5 -9.8
S1.4 128 86.5 91.6 88.3 92.4 93.5 95.2 94.9 92.4 96.1 0.9 -18.7
S2.1

10 5 1

16 70.5 71.3 70.7 70.4 46.6 72.0 70.7 67.0 74.0 2.0 -7.1
S2.2 32 76.1 79.7 78.2 78.6 61.2 80.9 80.5 77.6 82.3 1.4 -7.3
S2.3 64 88.0 89.9 88.2 88.5 80.0 92.5 91.9 89.0 93.3 0.8 -10.7
S2.4 128 94.4 96.6 96.7 95.5 94.0 97.6 97.6 96.2 98.1 0.5 -20.8
S3.1

25 2 1

16 66.2 66.3 64.7 65.6 67.1 66.7 66.7 61.3 68.3 1.2 -3.6
S3.2 32 80 82.5 80.7 81.6 83.4 84.5 82.1 80.3 85.9 1.4 -9.0
S3.3 64 85.4 86.0 85.7 86.2 89.1 89.6 88.6 86.1 91.0 1.4 -13.5
S3.4 128 93.2 96.0 94.8 95.7 97.2 97.3 97.4 96.7 98.0 0.6 -23.1
S4.1

50 1 1

16 64.8 67.4 66.0 66.3 66.9 67.1 64.5 62.9 68.4 1 -3.1
S4.2 32 75.6 78.2 77.4 77.4 78.4 80.1 78.3 75.7 81.0 0.9 -4.5
S4.3 64 91.3 93.9 93.7 93.8 95.0 95.2 94.0 92.5 96.1 0.9 -18.7
S4.4 128 94.3 95.5 94.4 94.7 95.4 97.4 96.5 95.2 98.2 0.8 -30.8

1. spℎereM+ is able to outperform all baselines on all
20 synthetic datasets. The absolute Top1 improve-
ment can go up to 2% and the error rate deduction
can go up to 30.8%. This shows the robustness of
spℎereM+.

2. When the dataset is fairly easy to classify (i.e., all base-
linemodels can produce 95+%Top1 accuracy), spℎereM+
is still able to further improve the performance and
gives a very large error rate reduction (up to 30.8%).
This indicates that spℎereM+ is very robust and reli-
able for datasets with different distribution character-
istics.

3. Comparing the error rate of different stratified sam-
pling generated datasets (S1.j - S4.j) we can see that
when we keep �max fixed and increase N�, the rel-
ative error reduction ER become larger. Increasing
N� means we do amore fine-grain stratified sampling.
The resulting datasets should sample more vMF dis-
tributions in the polar regions. This phenomenon shows
thatwhen the dataset has a larger data bias towards
the polar area, we expect spℎereM+ to be more ef-
fective.

4. From Table 1, we can also see that among all the base-
line methods, grid achieves the best performances on
most datasets (12 out of 20), followed by tℎeory (5 out
of 20). This observation aligns the experiment results
fromMai et al. (2020b) which shows the advantages of
multiscale location representation versus single-scale
representations.

5. It is interesting to see that although NeRF is also a
multiscale location encoding approach, it underper-
forms grid and tℎeory on all synthetic datasets. We
guess the reasons are 1)NeRF treats geo-coordinates
as 3D Euclidean coordinates and ignores the fact that
they are all on the spherical surface which yields more
modeling freedom andmakes it more difficult forNNffn
to learn; 2)NeRF uses predefined Fourier scales, i.e.,
{20, 21, ..., 2s, ..., 2S−1}, while grid, tℎeory, andSpℎere2V ec
aremore flexible in terms of Fourier scale choiceswhich
are controlled by rmax and rmin.

9. Experiment with Geo-Aware Image
Classification
Next, we empirically evaluate the performances of our

Sphere2Vec as well as all 9 baseline methods on 7 real-world
datasets for the geo-aware image classification task.
9.1. Dataset

More specifically, we test the performances of different
location encoders on seven datasets from three different prob-
lems: fine-grained species recognition, Flickr image recog-
nition, and remote sensing image classification. The statis-
tics of these seven datasets are shown in Table 2. Figure 7
and 8 show the spatial distributions of the training, valida-
tion/testing data of these datasets.
Fine-Grained Species Recognition We use five widely
used fine-grained species recognition image datasets inwhich
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Table 2
Dataset statistics on different geo-aware image classification
datasets. "Train", "Val", and "Test" column indicates the
number of data samples in each dataset. "#Class" column
indicates the total number of classes for each dataset.

Task Dataset Train Val Test #Class

Species Recog.

BirdSnap 19133 443 443 500
BirdSnap† 42490 980 980 500
NABirds† 22599 1100 1100 555
iNat2017 569465 93622 - 5089
iNat2018 436063 24343 - 8142

Flickr YFCC 66739 4449 4449 100
RS fMoW 363570 53040 - 62

each data sample is a tuple of an image I, a location x, and
its ground truth class y:

1. BirdSnap: An image dataset about bird species based
on BirdSnap dataset (Berg et al., 2014) which consists
of 500 bird species that are commonly found in the
North America. The original BirdSnap dataset (Berg
et al., 2014) did not provided the location metadata.
Mac Aodha et al. (2019) recollected the images and
location data based on the original image URLs.

2. BirdSnap†: An enrichedBirdSnap dataset constructed
by Mac Aodha et al. (2019) by simulating locations,
dates, and photographers from the eBrid dataset (Sul-
livan et al., 2009).

3. NABirds†: Another image dataset about North Amer-
ican bird species constructed byMacAodha et al. (2019)
based on the NABirds dataset (Van Horn et al., 2015)
in which the location metadata were also simulated
from the eBrid dataset (Sullivan et al., 2009).

4. iNat2017: The species recognition dataset used in the
iNaturalist 2017 challenges10 (Van Horn et al., 2018)
with 5089 unique categories.

5. iNat2018: The species recognition dataset used in the
iNaturalist 2018 challenges11 (Van Horn et al., 2018)
with 8142 unique categories.

Flickr ImageClassification Weuse theYahoo Flickr Cre-
ative Commons 100Mdataset12 (YFCC100M-GEO100 dataset)
which is a set of geo-tagged Flickr photos collected by Ya-
hoo! Research. Here, we denote this dataset asYFCC.YFCC
has been used in Tang et al. (2015); Mac Aodha et al. (2019)
for geo-aware image classification. See Figure 8a and 8b
for the spatial distributions of the training and test dataset of
YFCC.
Remote Sensing Image Classification We use the Func-
tional Map of the World dataset (denoted as fMoW) (Klo-
cek et al., 2019) as one representative remote sensing (RS)
image classification dataset. The fMoW dataset contains

10https://github.com/visipedia/inat_comp/tree/master/2017
11https://github.com/visipedia/inat_comp/tree/master/2018
12https://yahooresearch.tumblr.com/post/89783581601/

one-hundred-million-creative-commons-flickr-images

about 363K training and 53K validation remote sensing im-
ages which are classfied into 62 different land use types.
They are 4-band or 8-band multispectral remote sensing im-
ages. 4-band images are collected from the QuickBird-2 or
GeoEye-1 satellite systems while 8-band images are from
WorldView-2 or WorldView-3. We use the fMoW-rgb ver-
sion of fMoW dataset which are JPEG compressed version
of these remote sensing images with only the RGB bands.
The reason we pick fMoM is that 1) the fMoW dataset con-
tains RS imageswith diverse land use types collected all over
the world (see Figure 8c and 8d); 2) it is a large RS image
dataset with location metadata available. In contrast, the UC
Merced dataset (Yang and Newsam, 2010) consist of RS im-
ages collected from only 20 US cities. The EuroSAT dataset
(Helber et al., 2019) contained RS images collected from 30
European countries. And the location metadata of the RS
images from these two datasets are not publicly available.
Global coverage of the RS images is important in our exper-
iment since we focus on studying how the map projection
distortion problem and spherical-to-Euclidean distance ap-
proximation error can be solved by Sphere2Vec on a global
scale geospatial problem. The reason we use the RGB ver-
sion is that this dataset version has an existing pretrained im-
age encoder – MoCo-V2+TP (Ayush et al., 2020) available
to use. We do not need to train our own remote sensing im-
age encoder.
9.2. Geo-Aware Image Classification

To test the effectiveness of Sphere2Vec, we conduct geo-
aware image classification experiments on seven large-scale
real-world datasets as we described in Section 9.1.

Beside the baselines described in Section 6, we also con-
siderNo Prior, which represents an full supervised trained
image classifier without using any location information, i.e.,
predicting image labels purely based on image information
P (y|I).

Table 3 compares the Top1 classification accuracy of five
variants of Sphere2Vecmodels against those of nine baseline
models as we discussed in Section 6.

Similar to Equation 25, the Topk classification accuracy
on geo-aware image classification task is defined as follow

TOPk =
1

||

||

∑

i=1
1(Rank(xi, Ii, yi) ⩾ k) (26)

where  = {(xi, Ii, yi)} is a set of location xi, image Ii,and label yi tuples which indicates the whole validation or
testing set. || denotes the total number of samples in .
Rank(xi, Ii, yi) indicates the rank of the ground truth label
yi in the ranked listed of all classes based on the probabil-
ity score P (yi|xi)P (yi|Ii) given by a specific geo-aware im-
age classification model. 1(∗) is defined the same as that in
Equation 25.

From Table 3, we can see that the Sphere2Vec models
outperform baselines on all seven datasets, and the variants
with linear number ofDFS terms (spℎereC , spℎereC+, spℎereM ,
and spℎereM+) works as well as or even better than dfs.
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(a) BirdSnap Train (b) BirdSnap† Train (c) NABirds† Train (d) iNat2017 Train (e) iNat2018 Train

(f) BirdSnap Test (g) BirdSnap† Test (h) NABirds† Test (i) iNat2017 Val (j) iNat2018 Val
Figure 7: Training, validation/testing locations of different fine-grained species recognition datasets. Different datasets use either
validation or testing dataset to evaluate model performance. So we plot their corresponding image geographic distributions.

(a) YFCC Train (b) YFCC Test (c) fMoW Train (d) fMoW Val
Figure 8: Training and validation/testing locations of Flickr image recognition (YFCC) and RS image classification (fMoW).

This clearly show the advantages of Sphere2Vec to handle
large-scale geographic datasets. On the five species recog-
nition datasets, spℎereM+ achieves the best performance
while spℎereM and dfs achieve the best performance on
YFCC and fMoW correspondingly. Similar to our findings
in the synthetic dataset experiments, grid and tℎeory also

outperform or are comaprable to NeRF on all 7 real-world
datasets.
9.3. Hyperparameter Analysis

In order to find the best hyperparameter combinations for
each model on each dataset, we use grid search to do hyper-

Table 3
The Top1 classification accuracy of different geo-aware image classification models over three tasks: species recognition, Flickr
image classification (YFCC), and remote sensing (RS) image classification (fMOW (Christie et al., 2018)). See Section 6 for
the description of each baseline. tile indicates the results reported by Mac Aodha et al. (2019). wrap ∗ indicates the original
results reported by Mac Aodha et al. (2019) while wrap is the best results we obtained by rerunning their code. Since the test
sets for iNat2017, iNat2018, and fMoW are not open-sourced, we report results on validation sets. The best performance of the
baseline models and Sphere2Vec are highlighted as bold. All compared models use location only while ignoring time. The original
result reported by Ayush et al. (2020) for No Prior on fMOW is 69.05. We obtain 69.84 by retraining their implementation.
"Avg" column indicates the average performance of each model on all five species recognition datasets. See Section 9.3 for
hyperparameter tuning details.

Task Species Recognition Flickr RS
Dataset BirdSnap BirdSnap† NABirds† iNat2017 iNat2018 Avg YFCC fMOW
P(y|x) - Prior Type Test Test Test Val Val - Test Val
No Prior (i.e. image model) 70.07 70.07 76.08 63.27 60.20 67.94 50.15 69.84
tile (Tang et al., 2015) 70.16 72.33 77.34 66.15 65.61 70.32 50.43 -
xyz 71.85 78.97 81.20 69.39 71.75 74.63 50.75 70.18
wrap ∗ (Mac Aodha et al., 2019) 71.66 78.65 81.15 69.34 72.41 74.64 50.70 -
wrap 71.87 79.06 81.62 69.22 72.92 74.94 50.90 70.29
wrap + ffn 71.99 79.21 81.36 69.40 71.95 74.78 50.76 70.28
rbf (Mai et al., 2020b) 71.78 79.40 81.32 68.52 71.35 74.47 51.09 70.65
rff (Rahimi et al., 2007) 71.92 79.16 81.30 69.36 71.80 74.71 50.67 70.27
Space2Vec-grid (Mai et al., 2020b) 71.70 79.72 81.24 69.46 73.02 75.03 51.18 70.80
Space2Vec-tℎeory (Mai et al., 2020b) 71.88 79.75 81.30 69.47 73.03 75.09 51.16 70.81
NeRF (Mildenhall et al., 2020) 71.66 79.66 81.32 69.45 73.00 75.02 50.97 70.64
Sphere2Vec-spℎereC 72.11 79.80 81.88 69.68 73.29 75.35 51.34 71.00
Sphere2Vec-spℎereC+ 72.41 80.11 81.97 69.75 73.31 75.51 51.28 71.03
Sphere2Vec-spℎereM 72.06 79.84 81.94 69.72 73.25 75.36 51.35 70.99
Sphere2Vec-spℎereM+ 72.24 80.57 81.94 69.67 73.80 75.64 51.24 71.10
Sphere2Vec-dfs 71.75 79.18 81.39 69.65 73.24 75.04 51.15 71.46
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Table 4
The best hyperparameter combinations of Sphere2Vec models
on different geo-aware image classification datasets. The best
S is 8 for dfs and 32 for all others; and we fix the maximum
scale rmax as 1. Here, rmin indicates the minimum scale. ℎ and
k are the number of hidden layers and the number of neurons
in NN() respectively.

Dataset Model lr rmin k
BirdSnap All 0.001 10−6 512
BirdSnap† All 0.001 10−4 1024
NABirds† All 0.001 10−4 1024
iNat2017 All 0.0001 10−2 1024
iNat2018 All 0.0005 10−3 1024
YFCC All 0.001 5 × 10−3 512

fMoW

sphereC

0.01

10−3

512
sphereC+ 10−4
sphereM 10−3
sphereM+ 5 × 10−4

dfs 10−4

parameter tuning including supervised training learning rate
lr = [0.01, 0.005, 0.002, 0.001, 0.0005, 0.00005], the num-
ber of scales S = [16, 32, 64], the minimum scaling factor
rmin = [0.10.050.020.010.0050.0010.0001], the number of
hidden layers and number of neurons used in NNffn(⋅) –
ℎ = [1, 2, 3, 4] and k = [256, 512, 1024], the dropout rate in
NNffn(⋅) – dropout = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]. We
also test multiple options for the nonlinear function used for
NNffn(⋅) including ReLU, LeakyReLU, and Sigmoid. The
maximum scaling factor rmax can be determined based on the
range of latitude � and longitude �. For grid and tℎeory, we
use rmax = 360 and for all Sphere2Vec, we use rmax = 1. Asfor rbf and rff , we also tune their hyperparamaters includ-
ing kernel size � = [0.5, 1, 2, 10] as well as the number of
kernelsM = [100, 200, 500].

Based on hyperparameter tuning, we find out using 0.5
as the dropout rate and ReLU as the nonlinear activation
function forNNffn(⋅)works best for every location encoder.
Moreover, we find out lr and rmin are the most important
hyperparameters. Table 4 shows the best hyperparameter
combinations of different Sphere2Vec models on different
geo-aware image classification datasets. We use a smaller
S for dfs since it has O(S2) terms while the other models
have O(S) terms. dfs with S = 8 yield a similar number of
terms to the other models with S = 32 (see Table 5). Inter-
estingly, all five Sphere2Vec models (spℎereC , spℎereC+,
spℎereM , spℎereM+, and dfs) show the best performance
on the first six datasets with the same hyperparamter combi-
nations. On the fMoW dataset, five Sphere2Vec achieve the
best performances with different rmin but sharing other hy-
perparameters. This indicates that the proposed Sphere2Vec
models show similar performance over different hyperpa-
rameter combinations.

We also find out that using a deeper MLP as NNffn(⋅),
i.e., a larger ℎ does not necessarily lead to better classifi-
cation accuracy. In many cases, one hidden layer – ℎ = 1
achieves the best performance for many kinds of location

Table 5
Dimension of position encoding for different models in terms
of total scales S
Model spℎereC spℎereC+ spℎereM spℎereM+ dfs
Dim. 3S 6S 5S 8S 4S2 + 4S

encoders. We discuss this in detail in Section 9.4.2.
Based on the hyperparameter tuning, the best hyperpa-

rameter combinations are selected for different models on
different datasets. The best results are reported in Table 3.
Note that each model has been running for 5 times and its
mean Top1 score is reported. Due to the limit of space,
the standard deviation of each model’s performance on each
dataset is not included in Table 3. However, we report the
standard deviations of all models’ performance on three datasets
in Section 9.4.2.
9.4. Model Performance Sensitivity Analysis
9.4.1. Model Performance Distribution Comparison

To have a better understanding of the performance dif-
ference between Sphere2Vec and all baseline models, we vi-
sualize the distributions/histograms of Top1 accuracy scores
of different models on the BirdSnap†, NABirds†, iNat2018,
and YFCC dataset under different hyperparameter combi-
nations. More specifically, after the hyperparameter tun-
ing process described in Section 9.3, for each location en-
coder and each dataset we get a collection of trained mod-
els with different hyperparameter combinations. They corre-
spond to a distribution/histograms of Top1 accuracy scores
for this model on the respective dataset. Figure 9 compares
the histogram of spℎereM+ and all baseline models on four
datasets. We can see that the histogram of spℎereM+ is
clearly above those of all baselines. This further demon-
strates the superiority of Sphere2Vec over all baselines.
9.4.2. Performance Sensitivity to the Depth of MLP

To further understand how the performances of different
location encoders vary according to the depth of the multi-
layer perceptron NNffn(), we conduct a performance sensi-
tivity analysis. Table 6 is a complementary of Table 3 which
compares the performance of spℎereM+ with all baseline
models on the geo-aware image classification task. The re-
sults on three datasets are shown here including BirdSnap†,
NABirds†, and iNat2018. For eachmodel, we vary the depth
of its NNffn(), i.e., ℎ = [1, 2, 3, 4]. The best evaluation re-
sults with each ℎ are reported. Moreover, we run each model
with one specific ℎ 5 times and report the standard deviation
of the Top1 accuray, indicated in “()”. Several observations
can be made based on Table 6:

1. Although the absolute performance improvement be-
tween spℎereM+ and the best baseline model is not
very large – 0.91%, 0.62%, and 0.77% for three datasets
respectively, these performance improvements are
statistically significant given the standard deviations
of these Top1 scores.

2. These performance improvements are comparable
to those from the previous studies on the same tasks.
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(a) BirdSnap† dataset (b) NABirds† dataset

(c) iNat2018 dataset (d) YFCC dataset
Figure 9: The model performance (Top1 accuracy) distributions/histograms of different models under different hyperparameter
combinations on (a) the BirdSnap† dataset, (b) the NABirds† dataset, (c) the iNat2018 dataset, and (d) the YFCC dataset. X
axis: the Top1 accuracy scores of the respective model; Y axis: the frequency of different hyperparameter combinations of the
same model falling in the same Top1 Accuracy bin. In all four plots, each color indicate a Top1 accuracy histogram of one specific
model on a specific dataset. This histogram shows the model’s sensitivity towards different hyperparameter combinations. We
can see that in all four plots, the histogram of spℎereM+ (the blue histogram) are clearly different from all baseline models’
histograms. This shows the clear advantage of spℎereM+ over all baselines.

In other words, the small margin is due to the nature
of these datasets. For example, Mai et al. (2020b)
showed that grid or tℎeory has 0.79%, 0.44% abso-
lute Top1 accuracy improvement on BirdSnap† and
NABirds† dataset respectively. MacAodha et al. (2019)
showed thatwrap has 0.09%, 0%, 0.04% absolute Top1
accuracy improvement on BirdSnap, BirdSnap† and
NABirds† dataset. Here, we only consider the results
of wrap that only uses location information, but not
temporal information. AlthoughMacAodha et al. (2019)
showed that compared with tile and nearest neighbor
methods,wrap has 3.19% and 3.71% performance im-
provement on iNat2017 and iNat2018 datatset, these

large margins are mainly because the baselines they
used are rather weak. When we consider the typical
rbf and rff (Rahimi et al., 2007) used in our study,
their performance improvements are down to -0.02%
and 0.61%.

3. By comparing the performances of the same model
with different depths of its NNffn(), i.e., ℎ, we can
see that the model performance is not sensitive to ℎ.
In fact, in most cases, one layer NNffn() achieves the
best result. This indicates that the depth of the MLP
does not significantly affect themodel performance
and a deeper MLP does not necessarily lead to a
better performance. In other words, the systematic
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Table 6
The impact of the depth ℎ of multi-layer perceptrons NNffn()
on Top1 accuracy for various models. The numbers in “()”
indicates the standard deviations estimated from 5 independent
train/test runs. We find that the model performances are not
very sensitive to NNffn(), and, in most cases, one layer NNffn()
achieve the best result. In other words, the larger performance
gaps in fact come from different PES (⋅) we use. Moreover,
given the performance variance of each model, we can see
that spℎereM+ outperforms other baseline models on all these
three datasets and the margins are statistically significant. The
same conclusion can be drawn based on our experiments on
other datasets. Here, we only show results on three datasets
as an illustrative example.

Dataset BirdSnap† NABirds† iNat2018
ℎ Test Test Val

xyz

1 78.81 (0.10) 81.08 (0.05) 71.60 (0.08)
2 78.83 (0.10) 81.20 (0.09) 71.70 (0.02)
3 78.97 (0.06) 81.11 (0.06) 71.75 (0.04)
4 78.84 (0.09) 81.02 (0.03) 71.71 (0.03)

wrap

1 79.04 (0.13) 81.60 (0.04) 72.89 (0.08)
2 78.94 (0.13) 81.62 (0.04) 72.84 (0.07)
3 79.08 (0.15) 81.53 (0.02) 72.92 (0.05)
4 79.06 (0.11) 81.51 (0.09) 72.77 (0.06)

wrap + ffn

1 78.97 (0.09) 81.23 (0.06) 71.90 (0.05)
2 79.02 (0.15) 81.36 (0.04) 71.95 (0.05)
3 79.21 (0.14) 81.35 (0.05) 71.94 (0.04)
4 79.06 (0.09) 81.27 (0.13) 71.93 (0.04)

rbf

1 79.40 (0.13) 81.32 (0.08) 71.02 (0.18)
2 79.38 (0.12) 81.22 (0.11) 71.29 (0.20)
3 79.40 (0.04) 81.31 (0.07) 71.35 (0.21)
4 79.25 (0.05) 81.30 (0.07) 71.21 (0.19)

rff

1 78.96 (0.18) 81.27 (0.07) 71.76 (0.06)
2 78.97 (0.04) 81.28 (0.05) 71.71 (0.09)
3 79.07 (0.12) 81.30 (0.11) 71.80 (0.04)
4 79.16 (0.13) 81.22 (0.11) 71.46 (0.05)

grid

1 79.72 (0.07) 81.24 (0.06) 73.02 (0.02)
2 79.05 (0.06) 81.09 (0.07) 72.87 (0.05)
3 79.23 (0.12) 80.95 (0.14) 72.69 (0.05)
4 78.97 (0.10) 80.71 (0.10) 72.51 (0.07)

tℎeory

1 79.75 (0.17) 81.23 (0.02) 73.03 (0.09)
2 79.08 (0.20) 81.30 (0.11) 72.70 (0.02)
3 78.94 (0.19) 81.00 (0.09) 72.49 (0.08)
4 79.07 (0.14) 80.64 (0.14) 72.35 (0.07)

NeRF

1 79.66 (0.00) 81.27 (0.00) 73.00 (0.01)
2 79.65 (0.02) 81.29 (0.00) 72.97 (0.03)
3 79.40 (0.05) 81.32 (0.01) 72.88 (0.02)
4 79.24 (0.04) 81.23 (0.00) 72.80 (0.02)

spℎereM+

1 80.57 (0.08) 81.87 (0.02) 73.80 (0.05)
2 79.82 (0.14) 81.83 (0.04) 73.42 (0.06)
3 80.03 (0.08) 81.94 (0.04) 73.40 (0.05)
4 79.90 (0.15) 81.84 (0.09) 73.20 (0.04)

bias (i.e., distance distortion) introduced by grid,
tℎeory, andNeRF can not later be compensated by
a deep MLP. It shows the importance of designing a
spherical-distance-aware location encoder.

Table 7
Ablation Studies on different ways to combine image and lo-
cation information on the iNat2018 dataset. “Fusion” column
indicates different methods to fuse image and location informa-
tion. “F(⋅)” and “Enc(⋅)” indicates the type of image encoder
and location encoder used for each model. “F(⋅) Train” denotes
different ways to train the image encoder. “Frozen” means we
use an InceptionV3 network pre-trained on ImageNet as an im-
age feature extractor and freeze its learnable parameters while
only finetuning the last softmax layer. “Finetune” means we
finetune the whole image encoder F(⋅).

Model Concat (Frozen) Concat (Finetune) Post Fusion
F(⋅) InceptionV3 InceptionV3 InceptionV3
F(⋅) Train Frozen Finetune Finetune
Enc(⋅) spℎereM+ spℎereM+ spℎereM+
Top1 48.74 73.35 73.72

9.4.3. Ablation Studies on Approaches for Image and
Location Fusion

In Section 5.2, we discuss howwe fusion the predictions
from the image encoder and location encoder together for
the final model prediction. However, there are other ways
to fuse the image and location information. In this section,
we conduct ablation studies on different image and location
fusion approaches:

• Post Fusion is the method we adopt from Mac Aodha
et al. (2019) which is illustrated in Figure 1. The im-
age encoderF(⋅) and location encoderEnc(⋅) are trained
separately and their final predictions are combined.

• Concat (Img. Finetune) indicates a method in which
the image embeddingF(I) and the location embedding
Enc(x) are concatenated together and fed into a soft-
max layer for the final prediction. The whole architec-
ture is trained end-to-end.

• Concat (Img. Frozen) indicates the same model ar-
chitecture as Concat (Img. Finetune). The only differ-
ence is that F(⋅) is initialized by a pretrained weight
and its learnable parameters are frozen during the im-
age and location join training.

We conduct experiments on iNat2018 dataset and the
results are shown in Table 7. We can see that:

• Post Fusion, themethodwe adopt in our study, achieves
the best Top1 score and outperforms both Concat ap-
proaches. This result is aligned with the results of Chu
et al. (2019).

• Concat (Img. Frozen) shows a significantly lower per-
formance than Concat (Img. Finetune). This is un-
derstandable and consistent with the existing literature
(Ayush et al., 2020) since the linear probing method,
Concat (Img. Frozen), usually underperforms a fully
fine-tuning method, Concat (Img. Finetune).

• Although Post Fusion only shows a small margin over
Concat (Img. Finetune), the training process of Post
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(a) Validation Locations (b) Samples per � band

(c) ΔMRR per cell (d) ΔMRR per � band
Figure 10: The data distribution of the iNat2017 dataset and model performance comparison on it: (a) Sample locations for
validation set of the iNat2017 dataset where the dashed and solid lines indicates latitudes; (b) The number of training and
validation samples in different latitude intervals. (c) ΔMRR = MRR(spℎereC+) −MRR(grid) for each latitude-longitude cell.
Red and blue color indicates positive and negative ΔMRR while darker color means high absolute value. The number on each
cell indicates the number of validation data points while "1K+" means there are more than 1K points in a cell. (d) ΔMRR
between a model and baseline grid on the validation dataset in different latitude bands.

Fusion is much easier since we can separate the train-
ing process of the image encoder F(⋅) and location en-
coder Enc(⋅). In contrast, Concat (Img. Finetune) has
to train a large network which is hard to do hyperpa-
rameter tuning.

9.5. Understand the Superiority of Sphere2Vec
Based on the theoretical analysis of Sphere2Vec in Sec-

tion 10, we make two hypotheses to explain the superiority
of Sphere2Vec over 2D Euclidean location encoders such as
tℎeory, grid:

A: Our spherical-distance-kept Sphere2Vec have a signif-
icant advantage over 2D location encoders in the polar
area where we expect a large map projection distor-
tion.

B: Sphere2Vec outperforms 2D location encoders in ar-
eas with sparse sample points because it is difficult for
grid and tℎeory to learn spherical distances in these
areas with less samples but Sphere2Vec can handle it
due to its theoretical guarantee for spherical distance
preservation.

To validate these two hypotheses, we use iNat2017 and
fMoW to conduct multiple empirical analyses. Table 3 uses
Top1 classification accuracy as the evaluation metric to be
alignedwith several previousworks (MacAodha et al., 2019;
Mai et al., 2020b; Ayush et al., 2020). However, Top1 only
considers the samples whose ground truth labels are top-
ranked while ignoring all the other samples’ ranks. In con-
trast, mean reciprocal rank (MRR) considers the ranks of all
samples. Equation 27 shows the definition of MRR:

MRR = 1
||

||

∑

i=1

1
Rank(xi, Ii, yi)

. (27)

where || and Rank(xi, Ii, yi) have the same definition as
those in Equation 26. A higher MRR indicates better model
performance. Because of the advantage of MRR, we use
MRR as the evaluation metric to compare different models.
9.5.1. Analysis on the iNat2017 Dataset

Figure 10 and 11 show the analysis results on the iNat2017
dataset. Figure 10a shows the image locations in the iNat2017
validation dataset. We split this dataset into different latitude
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(a) ΔMRR per cell (b) ΔMRR per � band
Figure 11: The number of sample v.s. the model performance improvements on the iNat2017 dataset: (a) The number of
validation samples v.s. ΔMRR = MRR(sphereC+) - MRR(grid) per latitude-longitude cell defined in Figure 10c. The orange
dots represent moving averages. (b) The number of validation samples v.s. ΔMRR per latitude band defined in Figure 10d.

bands as indicated by the black lines in Figure 10a. The num-
bers of samples in each latitude band for the training and val-
idation dataset of iNat2017 are visualized in Figure 10b. We
can see that more samples are available in the North hemi-
sphere, especially when � > 10◦.

We compare the MRR scores of different models in dif-
ferent geographic regions to see how the differences in MRR
change across space. We compute MRR difference between
spℎereC+ to grid, i.e., ΔMRR = MRR(spℎereC+) −
MRR(grid), in different latitude-longitude cell and visu-
alize them in Figure 10c. Here, the color of cells is pro-
portional to ΔMRR. Red and blue color indicates positive
and negative ΔMRR and white color indicates nearly zero
MRR. Darker color corresponds to a high absolute ΔMRR
value. Numbers in cells indicate the total number of valida-
tion samples in this cell. We can see that spℎereC+ outper-
forms grid in almost all cells near the North Pole since all
these cells are in red color. This observation confirms our
Hypothesis A. However, we also see two blue cells at the
South Pole. But given the fact that these cells only contain 5
and 7 samples, we assume these two blue cells attributed to
the stochasticity involved during the neural network training.

To further validateHypothesis A,we computeMRR scores
of different models in different latitude bands. The ΔMRR
between eachmodel to grid in different latitude bands are vi-
sualized in Figure 10d. We can clearly see that 4 Sphere2Vec mod-
els have larger ΔMRR near the North Pole which validates
Hypothesis A. Moreover, Sphere2Vec has advantages on
bands with less data samples, e.g. � ∈ [−30◦,−20◦). This
observation also confirms Hypothesis B.

To further understand the relation between the model
performance and the number of data samples in different ge-
ographic regions, we contrast the number of samples with
ΔMRR. Figure 11a contrasts the number of samples per
cell with the ΔMRR = MRR(spℎereC+) −MRR(grid)
per cell (denoted as blues dots). We classify latitude-longitude
cells into different groups based on the number of samples
and an average MRR is computed for each group (denoted

as the yellow dots). We can see spℎereC+ has more advan-
tages over grid on cells with fewer data samples. This shows
the robustness of spℎereC+ on data sparse area. Similarly,
Figure 11b contrasts the number of samples in each latitude
band with ΔMRR between different models and grid per
band. We can see that 4 Sphere2Vec show advantages over
grid in bands with fewer samples. rbf is particularly bad
in data sparse bands which is a typical drawback for kernel-
based methods. The observations from Figure 11a and 11b
confirm our Hypothesis B.
9.5.2. Analysis on the fMoW Dataset

Following the same practice of Figure 10, Figure 12 shows
similar analysis results on the fMoW dataset. Figure 12a vi-
sualizes the sample locations in the fMoW validation dataset
and Figure 12b shows the numbers of training and valida-
tion samples in each latitude band. Similar to the iNat2017
dataset, we can see that for the fMoW dataset more sam-
ples are available in the North hemisphere, especially when
� > 20◦.

Similar to Figure 10c, Figure 12c shows the ΔMRR =
MRR(dfs) −MRR(grid) for each latitude-longitude cell.
Red and blue color indicates positive and negative ΔMRR.
Similar observations can be seen from Figure 10c. dfs has
advantages over grid in most cells near the North pole and
South Pole. grid only wins in a few pole cells with small
numbers of samples. This observation confirms our Hypoth-
esis A.

Similar to Figure 10d, Figure 12d visualizes theΔMRR
between each model to grid in different latitude bands on
the fMoW dataset. We can see that all Sphere2Vec models
can outperform grid on all latitude bands. dfs has a clear
advantage over all the other models on all bands. Moreover,
all Sphere2Vecmodels have clear advantages over grid near
the North pole and South pole which further confirms our
Hypothesis A. In latitude band � ∈ [0◦, 10◦) where we have
fewer training samples (see Figure 12b), dfs has clear ad-
vantages over other models which confirms our Hypothesis
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(a) Validation Locations (b) Samples per � band

(c) ΔMRR per cell (d) ΔMRR per � band
Figure 12: The data distribution of the fMoW dataset and model performance comparison on it: (a) Sample locations for
validation set of the fMoW dataset; (b) The number of training and validation samples in different latitude intervals. (c)
ΔMRR =MRR(dfs) −MRR(grid) for each latitude-longitude cell. Red and blue color indicates positive and negative ΔMRR
while darker color means high absolute value. The number on each cell indicates the number of validation data points while
"1K+" means there are more than 1K points in a cell. (d) ΔMRR between a model and baseline grid on the validation dataset
in different latitude bands.

B.
9.6. Visualize Estimated Spatial Distributions

To have a better understanding of how well different lo-
cation encoders model the geographic prior distributions of
different image labels, we use iNat2018 and fMoW data as
examples and plot the predicted spatial distributions of dif-
ferent example species/land use types from different loca-
tion encoders, and compare them with the training sample
locations of the corresponding species or land use types (see
Figure 13 and 14).
9.6.1. Predicted Species Distribution for iNat2018

From Figure 13, we can see thatwrap (Mac Aodha et al.,
2019) produces rather over-generalized species distributions
due to the fact that it is a single-scale location encoder. spℎereC+
(our model) produces a more compact and fine-grained dis-
tribution in each geographic region, especially in the polar
region and in data-sparse areas such as Africa and Asia. The
distributions produced by grid (Mai et al., 2020b) are be-
tween these two. However, grid has limited spatial distribu-
tion modeling ability in the polar area (e.g., Figure 13d and

13s) as well as data-sparse regions.
For example, in thewhite-browedwagtail example,wrap

produces an over-generalized spatial distribution which cov-
ers India, East Saudi Arabia, and the Southwest of China
(See Figure 13m). However, according to the training sam-
ple locations (Figure 13l), white-browed wagtails only occur
in India. grid is better than wrap but still produces a dis-
tribution covering the Southwest of China. spℎereC+ pro-
duces the best compact distribution estimation. Similarly,
for the red-striped leafwing, the sample locations are clus-
tered in a small region in West Africa while wrap produces
an over-generalized distribution (see Figure 13ab). grid pro-
duces a better distribution estimation (see Figure 13ac) but it
still has a over-generalized issue. Our spℎereC+ produces
the best estimation among these three models – a compact
distribution estimation covering the exact West Africa re-
gion (See Figure 13ad).
9.6.2. Predicted Land Use Distribution for fMoW

Similar visualizations are made for some example land
use types in the fMoWdataset, i.e., Figure 14. Factories/powerplants
(Figure 14b)might look similar tomulti-unit residential build-
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(a) Image (b) Feather duster worm (c) wrap (d) grid (e) spℎereC+

(f) Image (g) African pied hornbill (h) wrap (i) grid (j) spℎereC+

(k) Image (l) White-browed wagtail (m) wrap (n) grid (o) spℎereC+

(p) Image (q) Arctic Fox (r) wrap (s) grid (t) spℎereC+

(u) Image (v) Bat-Eared Fox (w) wrap (x) grid (y) spℎereC+

(z) Image (aa) Red-striped leafwing (ab) wrap (ac) grid (ad) spℎereC+

(ae) Image (af) False Tiger Moth (ag) wrap (ah) grid (ai) spℎereC+
Figure 13: Comparison of the predicted spatial distributions of example species in the iNat2018 dataset from different location
encoders. Each row indicates one specific species. We show one marine polychaete worm species, two bird species, two fox
species, and two butterfly species. The first and second figure of each row show an example figure as well as the data points of
this species from iNat2018 training data.

ings (Figure 14f) from overhead satellite imageries. But they
have very different geographic distributions (Figure 14b and
14g). A similarly situation can be seen for parks (Figure 14k
and 14l) and archaeological sites (Figure 14p and 14q).

The estimated spatial distributions of these four land use
types from three location encoders, i.e.,wrap, grid, and dfs
are visualized. Just like what we see from Figure 13, simi-
lar observations can be made. wrap usually produces over-
generalized distributions. dfs generates more compact and
accurate distributions while grid is between these two. We
also find out that grid will generate some grid-like patterns
due to the use of sinusoidal functions. dfs suffers less from
it and produces more accurate distributions.
9.7. Location Embedding Clustering

To show how the trained location encoders learn the im-
age label distributions, we divide the globe into small latitude-

longitude cells and use a location encoder (e.g., Sphere2Vec
or other baseline location encoders) trained on the iNat2017
or iNat2018 dataset to produce a location embedding for the
center of each cell. Then we do agglomerative clustering13
on all these embeddings to produce a clustering map. Fig-
ure 15 and 16 show the clustering results for different models
with different hyperparameters on the iNat2017 and iNat2018
datasets.

From Figure 15, we can see that:
1. In all these clustering maps, nearby locations are clus-

tered together which indicates their location embed-
dings are similar to each other. This confirms that the
learned location encoder can preserve distance infor-
mation.

13https://scikit-learn.org/stable/modules/generated/sklearn.
cluster.AgglomerativeClustering.html
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(a) Image (b) Factory or powerplant (c) wrap (d) grid (e) dfs

(f) Image (g) Multi-unit residential (h) wrap (i) grid (j) dfs

(k) Image (l) Park (m) wrap (n) grid (o) dfs

(p) Image (q) Archaeological site (r) wrap (s) grid (t) dfs
Figure 14: Comparison of the predicted spatial distributions of example land use types in the fMoW dataset from different
location encoders. Each row indicates one specific land use type. The first and second figure of each row show an example figure
as well as the data points of this land use types from the fMoW training data. As shown in Figure (a) and (f), although factories
or powerplants and multi-unit residential type look very similar from overhead satellite imageries, they have very distinct spatial
distribution (Figure (b) and (g)). Similarly, parks and archaeological sites look similar from satellites imageries (Figure (k) and
(p)) which are usually covered by vegetation. However, they have very distinct spatial distribution (Figure (l) and (q)). We
compare the predicted spatial distribution of each land use type from three different location encoders: wrap, grid, and dfs.

2. In the rbf clustering map shown in Figure 15d, ex-
cept North America, almost all the other regions are
in the same cluster. This is because compared with
North America, all other regions have fewer training
samples. This indicates that rbf can not generate a
reliable spatial distribution estimation in data-sparse
regions.

3. The clusteringmaps of grid (Figure 15b and 15c) show
horizontal strip-like clusters. More specifically, in Fig-
ure 15c, the boundaries of many clusters are parallel to
the longitude and latitude lines. We hypothesize that
these kinds of artifacts are created because grid mea-
sures the latitude and longitude differences separately
(see Theorem 3) which cannot measure the spherical
distance correctly.

4. wrap (Figure 15a), spℎereM (Figure 15h, spℎereC
(Figure 15j), spℎereC+ (Figure 15k), spℎereM+ (Fig-
ure 15l), and dfs (Figure 15m) show reasonable geo-
graphic clustering maps. Each cluster has rather nat-
urally looked curvilinear boundaries rather than lin-
ear boundaries. We think this reflects the true mix-
ture of different species distributions. However, as
we showed in Section 9.6, the single-scale wrap pro-
duces over-generalized distribution while Sphere2Vec
can produce more compact distribution estimation.

Similar conclusions can be drawn from Figure 16. We
believe those figures visually demonstrate the superiority of
Sphere2Vec.

10. Conclusion
In this work, we propose a general-purpose multi-scale

spherical location encoder - Sphere2Vec which can encode
any location on the spherical surface into a high dimensional
vector which is learning-friendly for downstream neuron net-
work models. We provide theoretical proof that Sphere2Vec
is able to preserve the spherical surface distance between
points. As a comparison, we also prove that the 2D location
encoders such as grid (Gao et al., 2019; Mai et al., 2020b)
model the latitude and longitude difference of two points
separately. And NeRF-style 3D location encoders (Milden-
hall et al., 2020; Schwarz et al., 2020; Niemeyer and Geiger,
2021) model the axis-wise differences between two points in
3D Euclidean space separately. Both of them cannot model
the true spherical distance. To verify the superiority of
Sphere2Vec in a controlled setting, we generate 20 synthetic
datasets and evaluate Sphere2Vec and all baselines on them.
Results show that Sphere2Vec can outperform all baselines
on all 20 sythetic datasets and the error rate reduction can go
up to 30.8%. The results indicate that when the underlying
dataset has a larger data bias towards the polar area, we ex-
pect a bigger performance improvement of Sphere2Vec. We
further conduct experiments on three geo-aware image clas-
sification tasks with 7 large-scale real-world datasets. Re-
sults shows that Sphere2Vec can outperform the state-of-the-
art 2D location encoders on all 7 datasets. Further analysis
shows that Sphere2Vec is especially excel at polar regions as
well data-sparse areas.
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(a) wrap (b) grid (rmin = 10−2) (c) grid (rmin = 10−6) (d) rbf (� = 1, m = 200)

(e) tℎeory (rmin = 10−2) (f) tℎeory (rmin = 10−6) (g)NeRF (S = 32) (h) spℎereM (rmin = 10−1)

(i) spℎereM (rmin = 10−2) (j) spℎereC (rmin = 10−2) (k) spℎereC+ (rmin = 10−2) (l) spℎereM+ (rmin = 10−2)

(m) dfs (rmin = 10−2)
Figure 15: Embedding clusterings of different location encoders trained on the iNat2017 dataset. (a) wrap ∗ with 4 hidden ReLU
layers of 256 neurons; (d) rbf with the best kernel size � = 1 and number of anchor points m = 200; (b)(c)(e)(f) are Space2Vec
models (Mai et al., 2020b) with different min scale rmin = {10−6, 10−2}.a (g) is NeRF with rmin = 32, and 1 hidden ReLU layer of
512 neurons. (h)-(m) are different Sphere2Vec models.b

a They share the same best hyperparameters: S = 64, rmax = 1, and 1 hidden ReLU layers of 512 neurons.
bThey share the same best hyperparameters: S = 32, rmax = 1, and 1 hidden ReLU layers of 1024 neurons.

Encoding point-features on a spherical surface is a fun-
damental problem, especially in geoinformatics, geography,
meteorology, oceanography, geoscience, and environmen-
tal science. Our proposed Sphere2Vec is a general-purpose
spherical-distance-reserving encodingwhich realizes our idea
of directly calculating on the round planet. It can be utilized
in a wide range of geospatial prediction tasks. In this work,
we only conduct experiments on geo-aware image classifica-
tion and spatial distribution estimation. Except for the tasks
we discussed above, the potential applications include ar-
eas like public health, epidemiology, agriculture, economy,
ecology, and environmental engineering, and researches like
large-scale humanmobility and trajectory prediction (Xu et al.,
2018), geographic question answering (Mai et al., 2020a),
global biodiversity hotspot prediction (Myers et al., 2000;
Di Marco et al., 2019; Ceballos et al., 2020), weather fore-
casting and climate change (Dupont et al., 2021; Ham et al.,
2019), global pandemic study and its relation to air pollu-
tion (Wu et al., 2020), and so on. In general, we expect
our proposed Sphere2Vec will benefit various AI for social
goods14 applications which involve predictive modeling at
global scales. Moreover, Sphere2Vec can also contribute to
the idea of developing a foundation model for geospatial ar-
tificial intelligence (Mai et al., 2022c, 2023a) in general.

14https://ai.google/social-good/
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(i) spℎereM (rmin = 10−3) (j) spℎereC (rmin = 10−3) (k) spℎereC+ (rmin = 10−3) (l) spℎereM+ (rmin = 10−3)
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Figure 16: Embedding clusterings of different location encoders trained on the iNat2018 dataset. (a) wrap with 4 hidden ReLU
layers of 256 neurons; (d) rbf with the best kernel size � = 1 and number of anchor points m = 200; (b)(c)(e)(f) are Space2Vec
models (Mai et al., 2020b) with different min scale rmin = {10−6, 10−3}.a (g) is NeRF with rmin = 32, and 1 hidden ReLU layer of
512 neurons. (h)-(m) are Sphere2Vec models with different min scale rmin.b

a They share the same best hyperparameters: S = 64, rmax = 1, and 1 hidden ReLU layer of 512 neurons.
bThey share the same best hyperparameters: S = 32, rmax = 1, and 1 hidden ReLU layers of 1024 neurons.
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Sphere2Vec

A. Theoretical Proofs of Each Theorem
A.1. Proof of Theorem 1
Proof. Given two points x1 = (�1, �1), x2 = (�2, �2) on
the same sphere S2 with radius R, we have PEspℎereC1 (xi) =
[sin(�i), cos(�i) cos(�i), cos(�i) sin(�i)] for i = 1, 2, the in-ner product
⟨PEspℎereC1 (x1), PE

spℎereC
1 (x2)⟩

= sin(�1) sin(�2) + cos(�1) cos(�1) cos(�2) cos(�2)
+ cos(�1) sin(�1) cos(�2) sin(�2)
= sin(�1) sin(�2) + cos(�1) cos(�2) cos(�1 − �2)
= cos(Δ�) = cos(ΔD∕R),

(28)

where Δ� is the central angle between x1and x2, and the
spherical law of cosines is applied to derive the second last
equality. So,
‖PEspℎereC1 (x1) − PE

spℎereC
1 (x2)‖2

=⟨PEspℎereC1 (x1) − PE
spℎereC
1 (x2),

PEspℎereC1 (x1) − PE
spℎereC
1 (x2)⟩

=2 − 2 cos(ΔD∕R)

=4 sin2(ΔD∕2R).

(29)

So ‖PEspℎereC1 (x1) − PE
spℎereC
1 (x2)‖ = 2 sin(ΔD∕2R)

sinceΔD∕2R ∈ [0, �2 ]. By Taylor expansion, ‖PEspℎereC1 (x1)−
PEspℎereC1 (x2)‖ ≈ ΔD∕R when ΔD is small w.r.t. R.
A.2. Proof of Theorem 2
Proof. ∀ ∗∈ {spℎereC, spℎereC+, spℎereM, spℎereM+},
PE∗S (x1) = PE

∗
S (x2) implies

sin(�1) = sin(�2), (30)
cos(�1) sin(�1) = cos(�2) sin(�2), (31)
cos(�1) cos(�1) = cos(�2) cos(�2), (32)
from s = 0 terms. Since sin(�) monotonically increases
when � ∈ [−�∕2, �∕2], given Equation 30 we have �1 =
�2. If �1 = �2 = �∕2, then both points are at North Pole,
�1 = �2 equal to whatever longitude defined at North Pole.
If �1 = �2 = −�∕2, it is similar case at South Pole. When
�1 = �2 ∈ (−�

2 ,
�
2 ), cos(�1) = cos(�2) ≠ 0. Then from

Equation 31 and 32, we have
sin �1 = sin(�2), cos(�1) = cos(�2), (33)
which shows that �1 = �2. In summary, x1 = x2, so PE∗S is
injective.
If ∗= dfs, PE∗S (x1) = PE∗S (x2) implies sin(�1) = sin(�2),
cos(�1) = cos(�2), sin(�1) = sin(�2), and cos(�1) = cos(�2),which proves x1 = x2 and PE∗S is injective directly.

A.3. Proof of Theorem 4

Proof. According to the definition ofNeRF encoder (18),
‖PENeRFS (x1) − PENeRFS (x2)‖2

=
S−1
∑

s=0

∑

p∈{z,x,y}

(

(sin(2s�p1) − sin(2s�p2))2

+ (cos(2s�p1) − cos(2s�p2))2
)

=
S−1
∑

s=0

∑

p∈{z,x,y}

(

sin2(2s�p1) + sin
2(2s�p2)

− 2 sin(2s�p1) sin(2s�p2)

+ cos2(2s�p1) + cos2(2s�p2)

− 2 cos(2s�p1) cos(2s�p2)
)

=
S−1
∑

s=0

∑

p∈{z,x,y}

(

2 − 2(sin(2s�p1) sin(2s�p2)

+ cos(2s�p1) cos(2s�p2))
)

=
S−1
∑

s=0

∑

p∈{z,x,y}

(

2 − 2 cos(2s�(p1 − p2))
)

=
S−1
∑

s=0

∑

p∈{z,x,y}
4 sin2(2s−1�(p1 − p2))

=
S−1
∑

s=0

(

4 sin2(2s−1�Δxz) + 4 sin2(2s−1�Δxx)

+ 4 sin2(2s−1�Δxy)
)

=
S−1
∑

s=0
4‖Ys‖2,

(34)

whereYs = [sin(2s−1�Δxz), sin(2s−1�Δxx), sin(2s−1�Δxy)].
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